

PIC Communication with USB
By Roy Seifert

PIC Communication with USB

 ii

This page intentionally left blank

Revised July 17, 2010 for use with mikroBASIC PRO for PIC version 3.80

PIC Communication with USB

 iii

Table of Contents
TABLE OF CONTENTS ... III
INTRODUCTION ...13
HARDWARE ...13

DEVELOPMENT BOARD ..14
SOFTWARE...14
PERSONAL THANKS..14
USB COMMUNICATION..15

MICROCONTROLLER CONFIGURATION ...15
USB DESCRIPTOR ..17

A Few Words about Descriptors ..17
mikroBASIC Pro Descriptor Tool ..17
Modifying the Descriptor ...18
How to Check if Your Descriptor is Working or Can the PC See My Device? ..23

SUMMARY ..27
REFERENCES...27

PIC Communication with USB

 iv

This page intentionally left blank

PIC Communication with USB

 13

Introduction
The purpose of this article is to explain how to interface a PIC microcontroller to a PC via the USB port.
Although the concepts are universal, the examples are specifically for use with mikroElektronika’s
MikroBASIC Pro for PIC.

My journey into PIC microcontrollers and USB communication began with my interest in Microsoft® Flight
Simulator 2004. I am an instrument-rated private pilot, but due to medical reasons, I can no longer fly. FS
2004 gives a very good simulation of instrument flight. There are some things it won’t do, nor allow me to do,
but overall it satisfies my urge to fly in an instrument environment. Plus, it allows me to fly aircraft that in real
life I couldn’t afford to really learn how to fly. My wonderfully patient wife thinks it’s a dumb game because
she can’t ever see anything happening, but I know I’m cruising at 24,000 feet at 180 knots in pressurized
comfort and in total control!

I already had a flight yoke, throttle quadrant and rudder pedals, but I wanted to increase the realism of flight
simulator by using real physical switches and knobs instead of mouse clicks to activate avionics and cockpit
functions. I purchased the Super Rotary Encoder from Desktop Aviator which allowed me to interface 16
rotary or 32 push-button switches and up to 8 axes. By doing some fancy programming and installing a
program called FSUIPC I was able to interface with over 100 push-button switches and 10 rotary switches.
Unfortunately, I needed to add one more rotary switch, but I was out of room.

The Super Rotary Encoder was built with a PIC18F2450 microcontroller. I have a background in computers
and programming, so I figured I could build my own switch interface, and so my journey began.

Hardware
Usually the first place I look for inexpensive goods is Ebay®. I found a large number of PIC programmers, but
I felt I needed more. Searching the internet I found mikroElektronika, a company in Serbia, that produces both
the hardware and software that I needed.

PIC Communication with USB

 14

Figure 1: EasyPIC6 Development Board

Development Board
The EasyPIC6 development board they manufacture allows me to program many different PIC
microcontrollers, and contains the circuits to develop and test LEDs, LCD graphical and character displays,
switches, one analogue to digital converter (ADC) and various interfaces. It also contains a port expander and
access to the microcontroller’s ports via header pins.

The software that comes with the board contains examples designed for the PIC16F887 microcontroller, and the
board comes with one of those microcontrollers. What a great tool for developing different applications! In
fact, I purchased an additional Serial 7-Segment Display board for a particular application I have in mind. The
EasyPIC6 did not come with the stand-alone 2x16 LCD display, the graphic LCD 128x64 with touch screen,
nor the one-wire temperature sensor, but I was able to purchase those from other suppliers.

Software
MikroElektronika allows you to download trial versions of each of their compilers. Assembly language is a bit
cumbersome, I know nothing of Pascal, I know some C language, but I am very fluent in BASIC, so I decided
to purchase their MikroBASIC Pro compiler for PIC. Prior to purchasing the full license, I used the trial
version with the included examples to test my USB connections.

Personal Thanks
Before going any farther, I want to extend my thanks to the mikroElektronika (ME) team for their excellent
products and support. Their hardware, software, libraries and examples made my development work almost
effortless. Sure I had a pretty steep learning curve, but the tools provided by ME made learning how to program
a microcontroller pretty easy. The ME team put a lot of hard work into both the hardware and software, and
provide the results at a very reasonable price.

PIC Communication with USB

 15

USB Communication
The most difficult part of this project was learning exactly what was required to get the PIC microcontroller to
communicate with the USB port. After about two weeks of trial and error and frustration, I finally got it to
work. The two most important things that absolutely have to be correct are the microcontroller configuration,
and the USB device descriptor. If even the smallest thing is incorrect about either of these, communication will
not occur.

Microcontroller Configuration
Even before programming the microcontroller, its configuration must be correct. In mikroBASIC Pro this is
accomplished by editing the project.

Figure 2: Configuration Bits

On the mikroBASIC Pro menu click on Project, Edit Project, or press Ctrl + Shift + E to open the Configuration
Bits dialog box as shown in Figure 2 above. Each configuration choice is selected with a drop-down box. You
need to read the data sheet for the particular device you plan to use in order to determine what to select.
Since the EasyPIC6 development board comes with an 8 MHz external crystal, 8 MHz was selected for the 96

PIC Communication with USB

 16

MHz PLL Prescaler. For USB operations, the crystal must be a multiple of 4 MHz, e.g. 4 MHz, 8 MHz, 12
MHz, etc. Again, refer to the data sheet to determine the correct value for the crystal.

The configuration can be changed to meet your particular needs; e.g. I changed PORTB to all digital and
disabled MCLR. The lines that seem to affect USB communication the most are the first four, and the tenth
line, USB Voltage Regulator.

You don’t have to remember this setup because this configuration has been saved for you by mikroElektronika
in C:\Program Files\Mikroelektronika\mikroBasic PRO for PIC\Schemes. All you have to do is load the
appropriate scheme by using the buttons on the right of this dialog box. Once you make any changes, you can
also save your scheme so it can be loaded into another microcontroller.

Figure 3: 28-Pin Microcontroller Hardware Configuration

With the above configuration bits selected, the microcontroller hardware is configured as shown in Figure 3.
Any changes to lines 1 – 4 or line 10 would require a corresponding change in the hardware configuration.
Refer to the appropriate data sheet.

PIC Communication with USB

 17

USB Descriptor
This was probably the most difficult for me to get right. The USB descriptor is used during the enumeration
process to identify the peripheral device to the host, i.e. identify the microcontroller to the PC. This has to be
correct, otherwise your microcontroller will not be recognized and you will get a device error message.

A Few Words about Descriptors

What we are building with the microcontrollers are human interface devices (HID) which require a specific type
of descriptor. I did a lot of research on the Internet regarding USB HID descriptors. I’ve listed those references
in the reference section and will list them again here:

• USB Implementers Forum, Inc. www.usb.org – This is where you can find the USB interface
specifications and everything else you ever wanted to know about USB. The most useful thing I found
here was the HID Descriptor Tool which allows you to build the report descriptor. It also comes with
examples of different types of report descriptors. You can use these report descriptors instead of the
generic report descriptor that the mikroBASIC Pro descriptor tool built.

• Amr Bekhit, http://www.helmpcb.com/Electronics/USBJoystick/USBJoystick.aspx - This article
explains how to convert an old joystick that used a joystick port to one that uses a USB port using a
microcontroller. This article provided my first breakthrough on creating a valid joystick HID
descriptor.

• USB Made Simple, http://www.usbmadesimple.co.uk/index.html - A series of articles on how USB
works. The descriptor explanation was outstanding.

• USB in a Nutshell, http://www.beyondlogic.org/usbnutshell/ - Great article on how USB works,
especially good explanation of the descriptor.

mikroBASIC Pro Descriptor Tool

mikroBASIC Pro comes with an HID descriptor tool built into the HID Terminal tool. To build a generic
descriptor, on the mikroBASIC Pro menu click on Tools, HID Terminal, then click on the Descriptor tab.

PIC Communication with USB

 18

Figure 4: mikroBasic PRO Descriptor Tool

The parts I found helpful about this tool were being able to enter the vendor ID (VID) hex value, product ID
(PID) hex value, and the Vendor Name and Product Name strings as shown in Figure 4. Everything else I left
alone, or changed in the descriptor itself. Technically, the vendor ID is assigned by the USB organization for
the measly sum of $2,000! You can pretty much put anything here.

Modifying the Descriptor

I specifically wanted to modify a CH Products F16 joystick that interfaced to a joystick port so it would
interface with a USB port. Following is the descriptor that I created along with an explanation of the various
parts. Anything you see in red is a change I made.

PIC Communication with USB

 19

module F16dsc

const USB_VENDOR_ID as word = 0x1234
const USB_PRODUCT_ID as word = 0x0001
const USB_SELF_POWER as char = 0x80 ' Self powered 0xC0, 0x80 bus powered
const USB_MAX_POWER as char = 50 ' Bus power required in units of 2 mA
const HID_INPUT_REPORT_BYTES as char = 64
const HID_OUTPUT_REPORT_BYTES as char = 64
const EP_IN_INTERVAL as char = 1
const EP_OUT_INTERVAL as char = 1

const USB_INTERRUPT as char = 0
const USB_TRANSFER_TYPE as char = 0x03 '0x03 Interrupt
const USB_HID_EP as char = 1
const USB_HID_RPT_SIZE as char = 78 ‘Changed report descriptor size for my report descriptor

structure device_descriptor
 dim bLength as char ' bLength - Descriptor size in bytes (12h)
 dim bDescriptorType as char ' bDescriptorType - The constant DEVICE (01h)
 dim bcdUSB as word ' bcdUSB - USB specification release number (BCD)
 dim bDeviceClass as char ' bDeviceClass - Class Code
 dim bDeviceSubClass as char ' bDeviceSubClass - Subclass code
 dim bDeviceProtocol as char ' bDeviceProtocol - Protocol code
 dim bMaxPacketSize0 as char ' bMaxPacketSize0 - Maximum packet size for endpoint 0
 dim idVendor as word ' idVendor - Vendor ID
 dim idProduct as word ' idProduct - Product ID
 dim bcdDevice as word ' bcdDevice - Device release number (BCD)
 dim iManufacturer as char ' iManufacturer - Index of string descriptor for the manufacturer
 dim iProduct as char ' iProduct - Index of string descriptor for the product.
 dim iSerialNumber as char ' iSerialNumber - Index of string descriptor for the serial number.
 dim bNumConfigurations as char ' bNumConfigurations - Number of possible configurations
end structure

const device_dsc as device_descriptor = (
 0x12, ' bLength
 0x01, ' bDescriptorType
 0x0200, ' bcdUSB
 0x00, ' bDeviceClass
 0x00, ' bDeviceSubClass
 0x00, ' bDeviceProtocol
 8, ' bMaxPacketSize0
 USB_VENDOR_ID, ' idVendor
 USB_PRODUCT_ID, ' idProduct
 0x0020, ' bcdDevice ‘Change this 4-digit hex value for the version number
 0x01, ' iManufacturer
 0x02, ' iProduct
 0x03, ' iSerialNumber ‘Change to 0x03 to add a serial number
 0x01 ' bNumConfigurations
)

' Configuration 1 Descriptor
const configDescriptor1 as byte[41] = (
 ' Configuration Descriptor
 0x09, ' bLength - Descriptor size in bytes
 0x02, ' bDescriptorType - The constant CONFIGURATION (02h)
 0x29,0x00, ' wTotalLength - The number of bytes in the configuration descriptor and all
of its subordinate descriptors
 1, ' bNumInterfaces - Number of interfaces in the configuration
 1, ' bConfigurationValue - Identifier for Set Configuration and Get Configuration
requests
 0, ' iConfiguration - Index of string descriptor for the configuration
 USB_SELF_POWER, ' bmAttributes - Self/bus power and remote wakeup settings
 USB_MAX_POWER, ' bMaxPower - Bus power required in units of 2 mA

 ' Interface Descriptor
 0x09, ' bLength - Descriptor size in bytes (09h)
 0x04, ' bDescriptorType - The constant Interface (04h)
 0, ' bInterfaceNumber - Number identifying this interface

PIC Communication with USB

 20

 0, ' bAlternateSetting - A number that identifies a descriptor with alternate settings
for this bInterfaceNumber.
 2, ' bNumEndpoint - Number of endpoints supported not counting endpoint zero
 0x03, ' bInterfaceClass - Class code
 0, ' bInterfaceSubclass - Subclass code
 0, ' bInterfaceProtocol - Protocol code
 0, ' iInterface - Interface string index

 ' HID Class-Specific Descriptor
 0x09, ' bLength - Descriptor size in bytes.
 0x21, ' bDescriptorType - This descriptor's type: 21h to indicate the HID class.
 0x01,0x01, ' bcdHID - HID specification release number (BCD).
 0x00, ' bCountryCode - Numeric expression identifying the country for localized
hardware (BCD) or 00h.
 1, ' bNumDescriptors - Number of subordinate report and physical descriptors.
 0x22, ' bDescriptorType - The type of a class-specific descriptor that follows
 USB_HID_RPT_SIZE,0x00, ' wDescriptorLength - Total length of the descriptor identified above.

 ' Endpoint Descriptor
 0x07, ' bLength - Descriptor size in bytes (07h)
 0x05, ' bDescriptorType - The constant Endpoint (05h)
 USB_HID_EP or 0x80, ' bEndpointAddress - Endpoint number and direction
 USB_TRANSFER_TYPE, ' bmAttributes - Transfer type and supplementary information
 0x40,0x00, ' wMaxPacketSize - Maximum packet size supported
 EP_IN_INTERVAL, ' bInterval - Service interval or NAK rate

 ' Endpoint Descriptor
 0x07, ' bLength - Descriptor size in bytes (07h)
 0x05, ' bDescriptorType - The constant Endpoint (05h)
 USB_HID_EP, ' bEndpointAddress - Endpoint number and direction
 USB_TRANSFER_TYPE, ' bmAttributes - Transfer type and supplementary information
 0x40,0x00, ' wMaxPacketSize - Maximum packet size supported
 EP_OUT_INTERVAL ' bInterval - Service interval or NAK rate
)

structure hid_report_descriptor
 dim report as char[USB_HID_RPT_SIZE]
end structure

const hid_rpt_desc as hid_report_descriptor = (
' USB Data Map
' |----|----|----|----|----|----|----|----| ‘This USB data map helps me to determine where to place the
' 0| Throttle | ‘data into the USB write buffer. This data map is determined
' |----|----|----|----|----|----|----|----| ‘by the declarations in the report descriptor.
' 1| X Axis |
' |----|----|----|----|----|----|----|----|
' 2| Y Axis |
' |----|----|----|----|----|----|----|----|
' 3|SW4 |SW3 |SW2 |SW1 | Hat Switch |
' |----|----|----|----|----|----|----|----|
' 4|N/A |N/A |SW10|SW9 |SW8 |SW7 |SW6 |SW5 |
' |----|----|----|----|----|----|----|----|

 (0x05, 0x01, ' USAGE_PAGE (Generic Desktop)
 0x15, 0x00, ' LOGICAL_MINIMUM (0)
 0x09, 0x04, ' USAGE (Joystick)
 0xA1, 0x01, ' COLLECTION (Application)
 0x05, 0x02, ' USAGE_PAGE (Simulation Controls)
 0x09, 0xBB, ' USAGE (Throttle)
 0x15, 0x00, ' LOGICAL_MINIMUM (0)
 0x26, 0xFF, 0x00, ' LOGICAL_MAXIMUM (255)
 0x75, 0x08, ' REPORT_SIZE (8)
 0x95, 0x01, ' REPORT_COUNT (1)
 0x81, 0x02, ' INPUT (Data Var Abs)
 0x05, 0x01, ' USAGE_PAGE (Generic Desktop)
 0x09, 0x01, ' USAGE (Pointer)
 0xA1, 0x00, ' COLLECTION (Physical)
 0x09, 0x30, ' USAGE (X)
 0x09, 0x31, ' USAGE (Y)
 0x95, 0x02, ' REPORT_COUNT (2)
 0x81, 0x02, ' INPUT (Data Var Abs)

PIC Communication with USB

 21

 0xC0, ' END_COLLECTION
 0x09, 0x39, ' USAGE (Hat switch)
 0x15, 0x00, ' LOGICAL_MINIMUM (0)
 0x25, 0x03, ' LOGICAL_MAXIMUM (3)
 0x35, 0x00, ' PHYSICAL_MINIMUM (0)
 0x46, 0x0E, 0x01, ' PHYSICAL_MAXIMUM (270)
 0x65, 0x14, ' UNIT (Eng Rot:Angular Pos)
 0x75, 0x04, ' REPORT_SIZE (4)
 0x95, 0x01, ' REPORT_COUNT (1)
 0x81, 0x02, ' INPUT (Data Var Abs)
 0x05, 0x09, ' USAGE_PAGE (Button)
 0x19, 0x01, ' USAGE_MINIMUM (Button 1)
 0x29, 0x0A, ' USAGE_MAXIMUM (Button 10)
 0x15, 0x00, ' LOGICAL_MINIMUM (0)
 0x25, 0x01, ' LOGICAL_MAXIMUM (1)
 0x75, 0x01, ' REPORT_SIZE (1)
 0x95, 0x0C, ' REPORT_COUNT (12) 2 bits added to switch report count
 ' so bytes are even. Bytes must be even.
 0x55, 0x00, ' UNIT_EXPONENT (0)
 0x65, 0x00, ' UNIT (None)
 0x81, 0x02, ' INPUT (Data Var Abs)
 0xC0) ' END_COLLECTION
)

'Language code string descriptor
structure str1
 dim bLength as char
 dim bDscType as char
 dim wString as word[1]
end structure

const strd1 as str1 = (
 4,
 0x03,
 (0x0409)
)

'Manufacturer string descriptor
structure str2
 dim bLength as char
 dim bDscType as char
 dim wString as word[16]
end structure

const strd2 as str2 = (
 14, 'sizeof this descriptor string
 0x03,
 ("8"," ","B","i","t","s")
)

'Product string descriptor
structure str3
 dim bLength as char
 dim bDscType as char
 dim wString as word[23]
end structure

const strd3 as str3 = (
 26, 'sizeof this descriptor string
 0x03,
 ("F","1","6"," ","J","o","y","s","t","i","c","k")
)

'Serial number string descriptor ‘Add this string for serial number
structure str4
 dim bLength as char
 dim bDscType as char
 dim wString as word[7]
end structure

const strd4 as str4 = (

PIC Communication with USB

 22

 16, 'sizeof this descriptor string
 0x03,
 ("F","1","6","0","0","0","1")
)

dim USB_config_dsc_ptr as ^const char[1]

dim USB_string_dsc_ptr as ^const char[3]

sub procedure USB_Init_desc()

implements
 sub procedure USB_Init_desc()
 USB_config_dsc_ptr[0] = @configDescriptor1
 USB_string_dsc_ptr[0] = ^const char(@strd1)
 USB_string_dsc_ptr[1] = ^const char(@strd2)
 USB_string_dsc_ptr[2] = ^const char(@strd3)
 USB_string_dsc_ptr[3] = ^const char(@strd4) ‘Send the serial number to the PC
 end sub
end.

A number of key things to remember if you want your descriptor to work:

1. Be sure const USB_HID_RPT_SIZE as char = 78 equals the correct length of the report descriptor in bytes.
2. Start with a good working report descriptor before making any changes. Then make one change at a

time and see if it still works.
3. Start with a USB sample program that works before making any changes.
4. If you make any changes to the report descriptor, be sure to always use even bytes.

Project Manager

Now that the USB descriptor is completed you must tell the compiler to use the file. This is done with the
Project Manager.

PIC Communication with USB

 23

Figure 5: Project Manager

On the right side of the compiler screen click on the Project Manager tab. This opens the Project Manager as
shown in Figure 5. Be sure the descriptor file appears below the Sources folder. If it does not appear, right-
click on the Sources folder, click Add File to Project…, then select your descriptor file. Now, when your main
program compiles, the descriptor file will automatically be included. Be sure to save your project by clicking
on Project, Save Project in the menu.

How to Check if Your Descriptor is Working
or Can the PC See My Device?

So how do you know if your descriptor is working? Simple, just plug a USB cable into the other USB port on
the EasyPIC6 development board. You need two USB cables plugged into the board, one to communicate with
the board and provide power, the other to communicate with the microcontroller you just programmed.

PIC Communication with USB

 24

Figure 6: ME HID Terminal Recognizing Device

If the PC can successfully communicate with the device, when the device is plugged in you should hear the
“bong-bing” chime. If this is the first time your device is connected to the PC you should also get messages
indicating that new hardware was found, connected, and ready. Your device should also appear in the HID
Terminal tool, note the serial number. Just scroll down until you see your device, then click on it.

PIC Communication with USB

 25

Figure 7: Device Information Screen

After you click on your device, if you click on the Info button you should see the screen shown in Figure 7.
This contains all the information that came from your descriptor. Note the version and serial number match
what I had entered in the descriptor.

PIC Communication with USB

 26

Figure 8: Microsoft® Game Controller Window

Figure 9: Device Properties

Since I declared my device as a joystick, it appears in the Game Controller window found in Control Panel as
seen in Figure 8. When I click on Properties I can see all the switches and axes as shown in Figure 9.

PIC Communication with USB

 27

I’m not going to go into the details of my firmware program, but basically I read the three analogue inputs for
the three axes and drop the results into bytes 0 - 2 of the USB write buffer. The 4 hat switches and first four
push-button switches I put into byte 3, and the last 6 switches I put into byte 4. I then send all 5 bytes to the
USB port with the statement: HID_Write(@userWR_buffer, 5)

So what happens if the PC does not recognize your device? A hardware problem caused the message “USB
Device not Recognized” to pop up. I created a stand-alone board that had problems with the type B USB
connector that I have since corrected.

When the report descriptor was not correct I heard “bong” four times in rapid succession and got the message,
“Unknown Device”, and “There was a problem communicating with the device”. This was caused by not
declaring the correct multiples of 8 bits in the report descriptor. Again, I started with a good working descriptor
and a good working program, then made small changes to see what happened.

Summary
As I stated before, it took me weeks of research and frustration to get to the point where the PC recognized my
device and the descriptor. I cannot stress enough:

• Make sure your microcontroller configuration is correct
• Start with a good working descriptor and a good working program
• Make small changes and test to see if your microcontroller is still communicating with the PC

Now that I have a good working descriptor, I can concentrate on my program.

References
Company/Product Web Site Description

mikroElektronika www.mikroe.com Source for :
• Easy Pic6 development

board
• MikroBASIC PRO for PIC

compiler
• Microcontroller manuals

Desktop Aviator www.desktopaviator.com Aviation simulation controls and
interface boards

FSUIPC by Peter
Dowson

http://www.schiratti.com/dowson.html Add-in .dll file for Flight
Simulator that interfaces with
switches. It does a lot of other
things, but I only used the switch
interface capabilities.

Microchip
Technology Inc

www.microchip.com Data sheets for PIC
microcontrollers

PIC Communication with USB

 28

USB Implementers
Forum, Inc.

www.usb.org USB standards and the HID
Descriptor Tool

Amr Bekhit http://www.helmpcb.com/Electronics/USBJoystick/USB
Joystick.aspx

Great article on how to convert
an old joystick port joystick to
USB using a microcontroller.
This was my first
breakthrough for creating a
valid descriptor. Thanks Amr!

USB Made Simple http://www.usbmadesimple.co.uk/index.html A series of articles on how USB
works. Great write up on the
descriptor.

USB In a Nutshell http://www.beyondlogic.org/usbnutshell/ Another great article on how
USB works. Good information
on the descriptor.

