
 1

PC12 Panels 
By Roy Seifert 

 
Introduction 
I am an instrument-rated private pilot but can no longer fly due to medical reasons.  Without actually 
stepping into a real plane, the closest I can get to flying is with Microsoft® Flight Simulator.  I am 
running FS 2004 which gives a very good simulation of instrument flight.  There are some things it 
won’t do, nor allow me to do, but overall it satisfies my urge to fly in an instrument environment.  Plus, 
it allows me to fly aircraft that in real life I couldn’t afford to really learn how to fly.  My wonderfully 
patient wife thinks it’s a dumb game because she can’t ever see anything happening, but I know I’m 
cruising at 24,000 feet at 180 knots in pressurized comfort and in total control! 
 

 
Figure 1:  Pilatus PC-12 in "Eight Bits" Livery 

 
I decided early on that since I’m playing make-believe pilot, I would find a virtual aircraft that I would 
like to buy in real life if I ever won the lottery.  I found the single-engine turbo-prop Pilatus PC-12 that 
performs like a twin, but handles like a single-engine Cessna.  For a significantly smaller price than $3.5 
million I purchased one from Flight One Software.  There are too many positive features about this 
aircraft simulation to list here, but suffice it to say all the aircraft available from Flight One Software are 
very realistic and high quality. 
 
To enhance my flight simulator experience I purchased CH Products flight yoke, rudder pedals, and 
throttle quadrant.  Along with their program, CH Control Manager I could configure buttons and axes to 
perform pretty much anything I wanted.   
 
I didn’t want to build a complete cockpit; I just wanted to substitute real switches for mouse clicks to 
activate avionics and cockpit functions, so I decided to build some switch panels (what my neighbor’s 
son calls a “dashboard”.).  There are many articles on the Internet regarding building these devices, but I 
found one that was very informative (can’t find the link now) that showed how to build switch panels 
that interface with Flight Simulator so I decided to try to build simulations of the panels I use most in the 
PC-12. 
 

http://www.flight1.com/
http://www.chproducts.com/retail/index.html


PC-12 Panels 

 2

PC-12 Panels 
When I fly the PC-12 I like to start with a cold cockpit, i.e. engine off, power off, standing outside of the 
aircraft ready to do a preflight inspection.  The panels I use most are: 
 

Overhead 
• 32 push-

buttons 
• 10 toggle 

switches 
(only 8 
used) 

 

Altimeter 
• 1 rotary 

encoder 
w/switch 

 

Autopilot 
• 14 push-

buttons  

Other panel 
switches 

• 8 push-
button 
switches  

Radios 
• 11 push-

buttons 
• 5 rotary 

encoders 
w/switch 

 

EFIS controller 
• 6 push-

button 
switches 

• 3 rotary 
encoders 
w/switch 
(only 2 pb 
switches 
used) 

Altitude/Vertical 
speed adjust 

• 2 push-
buttons 

• 1 rotary 
encoder 
w/switch 

 

GPS 
• 13 push 

buttons 
• 1 rotary 

encoder 
w/switch 

Table 1:  PC-12 Panels and Switches 
 
Of course, I also use the pedestal that contains the throttle, prop, gear, and flap levers.  I already have a 
CH Products throttle quadrant, but maybe someday I’ll build a more realistic pedestal. 
 
All of these panels can be duplicated using real switches.  The altitude/vertical speed adjustment 
controller and the radios have digital displays, but these would not function on my units; only the switch 
functions would be duplicated.  Also, some of the switches have corresponding lights or indicators 
which I will not duplicate on the panels. 
 



PC-12 Panels 

 3

Parts Sources 
After doing some research I found the parts I needed.  Most were available from Mouser Electronics, but 
I did purchase a few items from Radio Shack: 
 
Source Description P/N Total Qty 
www.mouser.com rotary encoder with switch 652-PEC11-4215F-S24 11
www.mouser.com push button sw, SPDT mom 612-PS1057A-BLK 87
www.mouser.com Toggle switch, DPDT, on-on 1055-TA2160-EVX 9
www.mouser.com Green LED 78-TLHG5400 6
www.mouser.com 120 ohm 1/4watt resistor 660-MF1/4DC1200F 6
www.mouser.com Knob, black plain 450-BA600 11
www.mouser.com 1N4148 diode 621-1N4148-T 306
www.mouser.com USB Type B Connector, Vertical 806-KUSBVX-BS1N-B 1
www.mouser.com 220 ohm 1/4watt resistor 660-MF1/4DC2200F 20

www.mouser.com 10K ohm 1/4watt resistor 660-MF1/4DC1002F 8

www.mouser.com 
6” x 9” photo-sensitive copper clad 
board 590-612 1

www.mouser.com PCB developer solution 590-418-500ML 1
www.mouser.com 8 MHz crystal 73-XT49S800-20 1
www.mouser.com .22 uF capacitor 594-K224K20X7RF53H5 1
www.mouser.com 22 pF capacitor 594-K220J15C0GF5TL2 1
www.mouser.com .1 uF capacitor 594-K104Z15Y5VF53L2 1
www.mouser.com PIC18F2455 Microcontroller 579-PIC18F2455-I/SP 1
www.mouser.com 24 AWG hookup wire, black, 100’ 566-9975-100-10 1
www.mouser.com 24 AWG hookup wire, green, 100’ 566-9975-100-05 1

www.towerhobbies.com 
Plastruct White Sheet Styrene .125" 
(2) LXDL98 2

www.radioshack.com Bus Wire 278-1341 1

www.radioshack.com 
25-Position Male Solder D-Sub 
Connector 210-3240 4

www.radioshack.com 
25-Position Female Solder D-Sub 
Connector 210-3239 4

www.radioshack.com 
15-Position Male Solder D-Sub 
Connector 210-2601 4

www.radioshack.com 
15-Position Female Solder D-Sub 
Connector 210-2496 4

www.radioshack.com 
9-Position Male Solder D-Sub 
Connector 210-2497 1

www.radioshack.com 
9-Position Female Solder D-Sub 
Connector 210-2498 1

Table 2:  Parts List 
 
I found a web site called Desktop Aviator which sells flight simulator panels and interface boards.  I 
purchased one of their Super Rotary Encoder interface boards which allowed me to interface 6 rotary 
encoders or 12 push button/toggle switches, and 8 axes.  The Super Rotary Encoder uses a PIC18F2450 

http://www.mouser.com
http://www.radioshack.com
http://www.towerhobies.com
http://www.desktopaviator.com/


PC-12 Panels 

 4

microcontroller (MCU) to interface with the switches, encoders, axes, and the PC via a USB connection.  
A microcontroller is nothing more than a computer in one integrated circuit (IC) package.  Since I’m a 
computer geek I decided to see if I could program my own interface.  In fact, it was thanks to Desktop 
Aviator that I began learning how to program microcontrollers and have developed many projects since 
this one. 
 
PIC Microcontroller Programming 
 

 
Figure 2:  EasyPIC6 Development Board 

 
I first needed to acquire the hardware and software necessary to program a microcontroller.  Searching 
the Internet I found mikroElektronika, a company in Serbia that produces both the hardware and 
software that I needed to program microcontrollers.  The EasyPIC6 development board they 
manufacture allows me to program many different PIC microcontrollers (PIC stands for peripheral 
interface controller), and contains the circuits to develop and test LED’s, LCD graphical and character 
displays, switches, one analogue to digital converter (ADC) and various interfaces including USB.  It 
also contains a port expander and access to the microcontroller’s ports via header pins.  The software 
that comes with the board contains examples designed for the PIC16F887 microcontroller, and the board 
comes with one of those microcontrollers.  What a great tool for developing different applications!  I 
used this board with its switches, LED’s, and USB interface to develop and test my controller. 
 
Compiler 
A compiler is a specialized computer program that converts English language statements into the 
hexadecimal machine code that a microcontroller can read.  MikroElektronika allows you to download 
trial versions of each of their compilers.  Assembly language is a bit cumbersome for me, I know 
nothing of Pascal, I know some C language, but I am very fluent in BASIC, so I decided to purchase 
their MikroBASIC Pro compiler for PIC. 
 
MikroElektronika also provides libraries and sample programs for learning how to program 
microcontrollers.  These were invaluable for learning how to interface with the USB port. 
 

http://www.mikroe.com/


PC-12 Panels 

 5

Microcontroller 
 

 
Figure 3:  PIC18F2455 

 
As mentioned before, a microcontroller is essentially a computer in a small, integrated circuit package.  
It has all the capabilities of a larger computer, but with less capacity.  A microcontroller is normally 
programmed to perform one function, rather than many functions. 
 
Microchip Technology Inc., a manufacturer of microcontrollers, publishes a selection guide for choosing 
the right microcontroller.  I chose the PIC18F2455 for the following reasons: 
 

• Small footprint, 28-pin DIP 
• Eight pins had weak internal pull-up.  These would be used for the switch column inputs.  The 

internal pull-ups meant I didn’t need external pull-up or pull-down resistors. 
• At least four output pins.  These would be used for the switch row outputs. 
• An additional eight input pins used to connect toggle switches. 
• USB interface capability for communication with the PC and Flight Simulator. 

 
The figure below shows the schematic for the microcontroller circuit.  C1 and C2 are required for the 8 
MHz crystal.  C3 is required for the internal USB 3.3 volt regulator, and C4 is a bypass capacitor 
required for the microcontroller.  The 220-ohm resistors are static protection for the microcontroller.  
Power, +5 volts and ground, is provided by the USB port. 

http://www.microchip.com
http://ww1.microchip.com/downloads/en/DeviceDoc/39630f.pdf


PC-12 Panels 

 6

A

B B

C

D D

1

1

2 3 4

4

5

5

Title:  Universal Joystick Interface

Rev:  1.01 Eng.:  Roy Seifert
Sheet:  1 of 1Date:  2011.04.26

R19 220
Col 1

Toggle 2

Toggle 1

Toggle 3

Toggle 4

Toggle 5

Toggle 7

Toggle 8

Toggle 6

Col 2

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6Row 7

Row 8

Col 3

Col 4

R23 220

R10 220

R9 220

R8
10K

R7
10K

R6
10K

R5
10K

R4
10K

R3
10K

R2
10K

R1
10K

R20 220

R24 220

R11 220 R21 220

R25 220

R27 220

R12 220

R16 220

R22 220

R26 220

R28 220

R13 220

R15 220

R14 220

R18 220

R17 220

2 3

A

C4
.1uF

C3
.22uF

C1 22pF

C2 22pF

8
MHz

IC1
PIC18F2455

MCLR/RE3

RA3/AN3

OSC2/RA6

1

5

10

2

6

11

8

13

3

7

12

9

14

4 25

20

15

26

21

16

27

22

17

24

19

28

23

18

RA0/AN0

RA4

RC0

Vss/GND

RC2

RA1/AN1

RA5/AN4

RC1

OSC1

Vusb

RA2/AN2

RB7

RB6

RB3/AN9

Vss GND

RB5

RB2/AN8

RC7

RB0/AN12

RC5/USB D+

RB4/AN11

RB1/AN10

RC6

VDD +5

RC4/USB D-

USB
type B
Bottom

D+

D- +5

GND

 
Figure 4:  PC-12 Interface Microcontroller Schematic 

 
Switch Matrix 
If you have more switches than pins available on the microcontroller, the switches can be arranged in a 
matrix, sometimes called a keyboard matrix or keypad.  Microsoft® Windows® only allows a maximum 
of 32 switches on a game controller so I used a 4 x 8 matrix.   
 

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

Row 1

Row 2

Row 3

Row 4  
Figure 5:  4 x 8 Switch Matrix 



PC-12 Panels 

 7

The eight columns are connected to eight input pins of the microcontroller.  These pins have an internal 
pull-up resistor which ensures that if nothing is connected, or the switch is open, it reads a logic 1.  I just 
have to remember to invert the data before sending it to the USB port.  The rows are connected to output 
pins of the microcontroller.  Initially all of the row outputs are set high.  Each row is then set low and the 
columns are read looking for a low or 0.  Since there are eight bits in a byte, the eight columns are 
connected to the eight pins of port B so I can read all eight pins at once.  Changing each row to 0 then 
reading the 8 columns is called polling. 
 
My panels use 11 rotary switches which have two outputs; therefore each rotary switch requires 1 row 
and two column connections.  I decided to use rows 1 – 3 for the rotary switches.  Since each rotary 
switch requires two columns, each row can contain 4 rotary switches for a total of 12 which gives me 
one spare; more about rotary switches later. 
 
The last row, row 4, I am using to read push-button switches.  I need to interface with 87 push-button 
switches, and each rotary switch also has a built-in push-button switch for a total of 98 switches.  Since 
row 4 only allowed me to interface with 8 switches, how could I interface one row with almost 100 
switches? 
 
Diode Matrix 
The answer was to create a diode matrix.  By creating a diode matrix, I could expand the number of 
push-button connections.  Think of the 8 columns as a byte of 8 bits.  With 8 bits I can have 256 
different combinations.  Since the combination of all zero’s 0000 0000 would not be used because at 
least one column has to be turned on, I can therefore connect up to 255 switches.  The key here is rather 
than having one switch drive only one column, I can have one switch drive up to 8 columns.  So long as 
each switch drives a different combination of columns, I can connect up to 255 switches to 8 columns. 
 

Switch Col 4 Col 3 Col 2 Col 1 
1      
2      
3      
4      
5      
6      
7      
8      
9      
10      
11      
12      
13      
14      
15      

Table 3:  1 x 4 Diode Matrix 
 



PC-12 Panels 

 8

The table above shows an example of a 1 x 4 matrix.  Using 4 columns I can connect up to 15 switches.  
Where ever you see a diode symbol in the table that is where a switch connects.  This is a simple binary 
progression, or you can think of it as counting from 1 to 15 in binary.  You can see that switch 1 only 
connects to 1 diode on column 1, but switch 7 connects to 3 diodes, and switch 15 connects to four 
diodes.  You need to have the diodes to isolate the switches; otherwise all the switches would be shorted 
together which would cause all the columns to come on every time any switch was pressed. 
 
This flexibility works because of the programming power of FSUIPC.  FSUIPC is a dynamic linked 
library (.dll) file that resides in the Modules folder of Flight Simulator.  It allows hardware and software 
to interface with Flight Simulator.  One of its features is the ability to program push buttons1, rotary 
switches, and joystick axes.  The ability to program combinations of up to 16 push-buttons to activate 
one function allows me to expand the number of push-button switches I can use to 65,535 (216 – 1).  I 
don’t think even the space shuttle has that many switches!  This function only works with the registered 
version, but it was well worth the money.  You can download and register FSUIPC from simMarket. 
 
FSUIPC needs to look at all eight switch lines, otherwise multiple actions could occur whenever a 
button is pressed.  For example, the FSUIPC command 1=P3,0,M1:2,0 says that if joystick #3, switch #0 
is pressed, run macro 1, command 2.  But any other combination of switches that uses switch 0 will also 
run this macro.  Because one switch is controlling up to 8 switch lines every switch command in 
FSUIPC must look at all 8 of those lines.  However, if you remember from my diode matrix, not all of 
those 8 switch lines are turned on by a switch, but I must still program FSUIPC to look at all 8 switch 
lines every time, whether the line is on or off. 
 
50=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(-3,29)(-3,30)3,31,C66617,0;GPS DIRECT 
 
I discovered that Windows sees switches 1-8, but FSUIPC sees the switches as 0-7 so I had to program 
all my switch commands accordingly.  FSUIPC sees my MCU as joystick #3.  The above switch 
command says that joystick 3, switch lines 27, 28 and 31 must be on, and switch lines 24, 25, 26, 29, 
and 30 must be off to perform the GPS Direct To function.  By programming the other push-button 
combinations in this way I only needed one row for all 98 of my push-button switches.  You can also see 
why I needed 306 diodes; 284 for different push-button combinations, and 22 for the 11 rotary encoders. 
 
Hardware 
 

 
Figure 6:  White Plastic Sheets 

 

                                                 
1 FSUIPC for Advanced Users by Peter L. Dowson pp 19-25 

http://www.schiratti.com/dowson.html
http://secure.simmarket.com/pete-dowson-fsuipc3.phtml


PC-12 Panels 

 9

I decided to use a 7” x 12” x 1/8” thick white plastic sheet for my panel fronts mounted on a wooden 
frame.  I cut all four panels from one sheet.  Each panel is 7” x 3” which leaves 1/2” on each side for 
mounting holes.  Because the sheet is white, I can paint it black, and then use my hobby CNC mill to 
engrave the lettering.  The paint is removed by the engraving leaving the white plastic showing through 
so the letters stand out.  A layer of automotive clear coat preserves the paint and prevents it from 
chipping.  I also plan to use my CNC mill to mill the switch cutouts. 
 

 
Figure 7:  Push Button Switch 

 
The push-button switches I purchased from Mouser Electronics lock into a square cutout and have 
solder terminals.  They are the perfect size for my panels. 

 
Figure 8:  Rotary Encoder with Push-Button Switch 

 
Mouser also sells rotary encoders that contain a push-button switch for a very reasonable price.  I needed 
11 for this project.   

 
Figure 9:  Rotary Encoder Knob 

 
I chose knobs from Mouser Electronics to fit the D-shaft of the rotary encoders.  I wanted to paint the 
front of the knob to correspond to functions, but it had a rubber coating which I found difficult to paint, 
so I just left them black. 
 



PC-12 Panels 

 10

Panel Design 

 
Figure 10:  Panel Layout, Left Side 

SWAP 



PC-12 Panels 

 11

 

 

 

 
Figure 11:  Panel Layout, Right Side 



PC-12 Panels 

 12

You will notice that my right side layout uses red switches because Mouser had run out of black. 
 

 
Figure 12:  CAD Drawing 

 
I used CorelDraw12 to create the layout of each panel, then exported the layout to BobCAD-CAM v20, 
my CAD/CAM program.  The red lines in the CAD drawing represent a tool path.  The rotary switch has 
a post to prevent the switch from rotating in the panel, so I had to mill a corresponding notch above the 
mounting hole.  I used a 1/16” square end milling bit to cut out the holes, and a 0.015” round end bit to 
engrave the lettering and lines.   
 

 
Figure 13:  Mounting Holes Drilled 



PC-12 Panels 

 13

 

 
Figure 14:  Panel Ready for Milling 

 
First I drilled all the mounting holes, then I cut each panel on my table saw.  I put masking tape on each 
side of the plastic before cutting to prevent the plastic from chipping.  I sprayed on a layer of flat black 
which is the final color of the panels, then I sprayed on a layer of automotive clear-coat to help preserve 
the paint and keep it from peeling/chipping due to handling. 
 

 
Figure 15:  Milling Switch Cutouts 

 
I mounted the plastic sheet onto a flat piece of wood, which I then mounted to the milling table.  I 
programmed my CNC mill to first mill the switch cutouts.  Then I installed the 0.015” round end bit and 
loaded the program to cut the engraving.  After I milled the engraving I gave the panel another shot of 
clear coat. 
 



PC-12 Panels 

 14

 
Figure 16:  EFIS Panel Ready for Switches 

 

 
Figure 17:  EFIS Panel with Switches Installed 

 

 
Figure 18:  Wiring of Switches 

 
After I installed the switches I wired all the common connectors together using bus wire.  The common 
of all push button switches are tied to row 4 of the switch matrix.  Notice in the above photo the diodes 
connected to the rotary switch connections; these will be connected to the rotary switch connections on 
rows 1 – 3 of the switch matrix. 
 



PC-12 Panels 

 15

Building the Boxes 
6”

11 3/4” 11 3/4”

3”

3”

2 7/8”

2 7/8”

 
Figure 19:  Box Dimensions 

 
I built two boxes of the same dimensions.  I purchased an eight-foot piece of 1” x 6” (which was really 
3/4“ x 5 1/2“) and an eight-foot piece of 1” x 3” (which was really 3/4“ x 2 1/2“) to build the box.  I 
used 1” x 6” to make the top, bottom, and sides, and used the 1” x 3” to make the center supports.  The 
center supports are not to keep the box rigid, but to prevent the panels from flexing when I press a 
button. 
 



PC-12 Panels 

 16

 
Figure 20:  Panels Mounted on the Left Box 

 
When I assembled the box, I used wallboard screws and butted the joints.  I didn’t do anything fancy 
like mitered or dovetailed joints.  After all, the joints are covered up by the panels.  I painted the box flat 
black, then sprayed it with clear coat.  I aligned the panels, drilled mounting holes, then mounted the 
panels with #6 pan head wood screws.  I then connected the two boxes together again using short 
wallboard screws. 
 
Wiring to the Matrix 
I decided to make the panels modular, so rather than wire them directly to the matrix board, I wired 
them to D sub-miniature connectors which I purchased from Radio Shack.  In this way I could easily 
remove one panel in case I needed to perform troubleshooting or maintenance, or make any changes.  
The following table shows the connectors I used; refer to Appendix A for the complete wiring table.   
 

Panel Connector 
Auto Pilot DB-15 
Alt/VS/SW DB-25 
Radios DB25 and DB-9 
EFIS DB25 
Fuel/Electrical/Starter DB-15 
Test/Lights/Cabin DB-15 
Temperature/Deice DB-15 
GPS DB-25 

Table 4:  Panel Connectors 



PC-12 Panels 

 17

I wanted to maximize space on my board so I took the switch combination table and sorted it by the 
number of diode connections, i.e. combinations of only one diode, then two diodes, etc.  Each row of 
diodes on the board contains up to 8 diodes (because there are 8 switch lines/columns).  The anode lead 
of each diode is connected to a switch column, and the cathode lead (the one with the black line) is 
connected to one contact of a push-button switch.  Since each row in the matrix contains 8 diodes, I next 
organized the table by number of switches that can be contained in one row of 8 diodes.  For example, in 
the table in Appendix A the first 8 switches connect to only one diode so I put those 8 diodes in diode 
row 1.  Next I found four combinations of 2 diodes that would fit in one row, and so on.  When I was all 
finished I needed 40 rows of diodes.  There was enough space on the board that I added two additional 
diode rows.  Because I only needed one switch connection on row 40 but it had space for two switches, I 
had 5 spare switch connections not used.   
 

 
Figure 21:  Auto Pilot Panel Wiring Completed 

 
I wired the male connectors to the panels, and the female connectors to the matrix.  Because I had 
multiple DB-15 and DB-25 connectors, I used different colored cable ties to match the appropriate 
connectors. 
 
Toggle Switches 
I discovered the hard way that I needed to treat the toggle switches specially.  A push-button switch is a 
momentary contact switch.  It is closed only while being pressed.  When I remove my finger from the 
button contact is broken.  A toggle switch is different because once toggled it stays in that position.  
Because of that I couldn’t wire the toggle switch directly to the diode matrix because once toggled it 
would keep one or more of the column lines low all the time.  Therefore the toggle switches needed to 
be isolated from the diode matrix. 
 



PC-12 Panels 

 18

+5V

5 volt
Reed
Relay

Row

To
Diode
Matrix

330

H11AA1

1000uf

 
Figure 22:  Toggle Switch Pulse Circuit 

 
One way to isolate a toggle switch from the diode matrix is to use an opto-coupler.  Plus, in order to 
function properly with Flight Simulator a toggle switch must send a pulse.  The above figure shows the 
schematic of a sample pulse circuit using a H11AA1 opto-coupler to trigger a reed relay.  The reed relay 
takes the place of the push-button switch.  Toggling the switch up applies +5 volts to the positive side of 
the 1000uF capacitor.  For a short amount of time the capacitor is shorted causing +5 volts to be applied 
to pin 2 which causes the right photo-diode to conduct.  This causes the photo-transistor to conduct 
which causes the relay to close.  As the capacitor charges the +5 volts on pin 2 eventually goes away 
turning off the photo-diode which turns off the photo-transistor which causes the relay to open.  The 
capacitor now has +5 volts on the positive side because it is now fully charged. 
 
When the toggle switch is moved down the positive side of the capacitor is connected to ground which 
causes the capacitor to discharge.  For a short amount of time +5 volts is applied to pin 1 which causes 
the left photo-diode to conduct and triggers the relay.  As the capacitor discharges the +5 volts on pin 1 
eventually goes away which causes the left photo-diode to stop conducting and the relay opens.  The 
time to charge or discharge the capacitor is determined by the size of the capacitor and the 330-ohm 
resistor which also controls the pulse length.  I have 9 toggle switches in my electrical panel, but only 8 
are connected.   
 
Rather than use the opto-coupler to create a pulse I decided to program the pulse in the MCU.  This 
saved me a few dollars in parts and some time in connecting the switches.  I connected the 8 toggle 
switches to 8 separate inputs on the MCU.  Each toggle switch is connected to one pin.  I programmed 
the MCU so that if it sees only one of these toggle switch inputs change it sends a pulse to the PC.  This 
way I get a pulse each time the toggle switch is moved; up or down.  This pulse is also used for the 
rotary switches. 
 
The 8 input pins I’m using for the toggle switches don’t have an internal pull-up resistor, so to make the 
toggle switches work correctly I connected the normally closed (NC) side of each switch to ground, and 
the normally-open (NO) side of the switch to +5 volts through a 10K-ohm pull up resistor.  The common 
of each toggle switch is connect to an MCU input.  I didn’t build my circuit board to accommodate this 



PC-12 Panels 

 19

so I had to hard-wire my changes to the board.  It would have been better to put the pull-up resistors on 
the board, but I had to put them on the toggle switches instead. 
 
It turns out I didn’t even need to program the pulse in the MCU.  FSUIPC automatically sends a pulse to 
Flight Simulator.  However, if I didn’t program the pulse in the MCU I would have had to program two 
lines in FSUIPC for each toggle switch; a pulse when the switch is moved up, and another pulse when 
the switch is moved down.   
 
Rotary Encoder Switch 
A rotary encoder switch is actually two switches in one.  It has two switched outputs, A and B, and one 
common connection.  As the switch is turned the A and B outputs change state, but only one output 
changes at a time, called gray coding.  Gray coding for a rotary switch is shown below. 
 

Gray coding for 
clockwise rotation 
 
Phase A B 
1 1 0 
2 1 1 
3 0 1 
4 0 0  

Gray coding for 
counter-clockwise 
rotation 
Phase A B 
1 0 0 
2 0 1 
3 1 1 
4 1 0  

 
The common pin is connected to a row, and the A-B pins are each connected to a column.  To decode 
direction I basically said if pin A changed state and it was different from pin B the switch moved 
clockwise.  If pin A changed state and it was the same as pin B the switch moved counter-clockwise.  
Since each rotary switch is connected to two columns, I made the right column pulse if the switch was 
moving clockwise; I made the left column pulse if the switch was moving counter-clockwise.  I also 
decided to count every fourth change of the rotary switch.  That way I couldn’t turn the switch faster 
than the microcontroller could process the switch changes. 
 
Printed Circuit Board Design and Fabrication 
I could have hard-wired the diode matrix using a pre-punched circuit board but I decided to make my 
own board instead.  I’ve had very good luck using photo-sensitive boards. 
 
There are a number of methods for producing PCB’s at home.  The key to the process is being able to 
transfer the artwork onto the copper board in preparation for etching.  I don’t have a laser printer so the 
iron transfer method wouldn’t work for me.  Another method is to make a silk-screen stencil, but I didn’t 
want to spend the $20 for two sheets of stencil, and whatever it would cost for the proper paint.  Plus, 
since this method was new to me, I didn’t want to spend the extra money to experiment, learn and 
possibly make mistakes. 
 
I’ve had good luck in the past with photo-sensitive boards so I decided to go with this method.  I 
purchased a positive photo-sensitive board and the developer solution from Mouser.  I probably should 
have purchased 2 boards in case I messed one up, but I was on a tight budget for this project. 
 
 



PC-12 Panels 

 20

 
Figure 23:  PC-12 Interface Board Corrected Artwork 



PC-12 Panels 

 21

I found a PCB design program on the Internet called Abacom Sprint Layout 50.  The above figure shows 
my corrected PCB design.  While populating and testing the board I found some errors in the artwork tht 
I correct.  The actual size of the board was 6” x 9”.  50% of the board is taken up by the 42 rows of the 
diode matrix, each row having up to 8 diodes.  The lower right corner contains the artwork for the 
microcontroller, support components, and the USB socket.   
 
The upper right corner is laid out for 8 opto-coupler pulse circuits, but, as mentioned before, I decided to 
do the pulse with programming instead, so this area is solid copper.  In the right middle are the circuits 
for connecting up to 12 rotary switches in a 3 x 8 matrix.  The rotary switches do not connect to the 
diode matrix; the diode matrix is only for row 4.  I used red to indicate the outline of the components to 
ensure they would fit on the board and not interfere with each other.  The large green areas are unused 
space on the board.  Since this space was unused I decided not to remove the copper from those areas; 
this saves some time and some of the etching chemical. 
 
I printed a mirror image of the PCB etch side on 3M transparency CG3480.  This transparency is 
specifically designed for use with ink-jet printers.  My artwork printed heavy and sharp. 
 
Following the instructions that came with the board, I laid the artwork print side down (which is why I 
had to print a mirror image) onto the sensitized side of the board, attached it with a piece of tape, and 
covered it with a piece of glass I removed from an old picture frame.  I positioned it five inches below a 
florescent light and exposed it for 10 minutes, then placed the board into the developer solution I diluted 
with ten parts cold tap water.  I constantly wiped the board with a foam brush I purchased from my local 
hardware store.  The development process took about 6 minutes.  After the board was developed I 
washed off the excess developer in running tap water; now the board was ready to etch. 
 

http://www.abacom-online.de/html/sprint-layout.html


PC-12 Panels 

 22

 
Figure 24:  Etched PCB from Original Uncorrected Artwork 



PC-12 Panels 

 23

 
I purchased a bottle of PCB Etchant Solution from Radio Shack #276-1535, and using a glass tray, 
etched my circuit board.  This process took about 30 minutes to remove the excess copper.  I used a hair 
dryer to warm the solution and keep it moving over the board which sped up the etching process. 
 
Ok, so now I had to drill the holes for the components.  I am fortunate to have a MAXNC 10 CL CNC 
hobby mill that I use for fabricating parts.  Abacom Sprint Layout 50 allows me to export all of the 
component holes as a plotter file which I import into my CAD/CAM program, BobCAD-CAM V20, and 
use to drill the holes in the board.   
 

 
Figure 25:  Corel Draw® Plot 

 
It’s actually not quite that easy.  I first imported the plotter file into Corel Draw® 12.  Each of the holes 
gets imported as a node.  I then connected two nodes with a line.  BobCAD-CAM V20 doesn’t 
recognize the nodes if I import the plotter file directly, but it does recognize the lines I created with 
Corel Draw® 12. 

http://www.radioshack.com
http://www.ximotion.com/
http://www.bobcad.com/


PC-12 Panels 

 24

 
Figure 26:  BobCAD-CAM Drilling 

 
Next I exported the lines to a drawing file, which I then imported into BobCAD-CAM V20.  At the end 
of each line I placed a point; each point became a hole location which I programmed with the CAM 
portion of the software.  In the above figure you can see the points and lines. 
 



PC-12 Panels 

 25

 
Figure 27:  Drilling PCB Holes 

 
I purchased a circuit board maker kit from Drill Bit City that contained the correct size bits I needed to 
drill the component holes.  I drilled holes in the corners of my board and mounted it to a piece of wood 
using screws, the wood was mounted to the cross-slide table of the mill.  Using my MAXCNC 10CL 
mill and the CAM program I created I drilled the component holes in the circuit board. 
 

http://www.drillbitcity.com/catalogue/product_detail.asp?Tg=301-R8WSFBRB


PC-12 Panels 

 26

 
Figure 28:  Completed PCB 

 
Once the holes were drilled I populated it with the components I purchased from Mouser.  I mounted a 
28-pin DIP socket onto the board so the MCU wouldn’t be permanently installed in case I needed to 
reprogram it.  As I was populating the board I discovered a number of artwork errors.  Plus I didn’t 
accommodate the toggle switches correctly so I had to make some changes to the board using 30-gauge 
wire. 
 
In the process of testing my panels I found that I had installed one diode backwards.  Not bad for 
soldering 265 diodes! 



PC-12 Panels 

 27

 
Figure 29:  Back of  Panels Box 

 
On the right you can see the diode matrix.  Each row corresponds to a row as laid out in my wiring table 
in Appendix A.  I used bus wire I purchased from Radio Shack to wire the vertical columns.  The anode 
of each diode is connected to one of these column busses.  The D subminiature connectors are wired 
directly to the diode matrix.  In the center of the board are connections for the rotary switches which are 
then wired to the 3x8 matrix on the left.  This matrix is connected to the MCU via etching.  Finally, 
coming from the left side of the MCU are the connections for the 8 toggle switches.  I used the large 
holes in the board for mounting to a jig to drill the component holes, but these are also used to mount the 
board onto the rear of my box. 



PC-12 Panels 

 28

 
Figure 30:  Switch Test 

 
After I wired each panel and the corresponding diode matrix I tested each button.  I clicked on Control 
Panel, clicked on Game Controllers, selected the PC12 Interface, then clicked on Properties.  Because I 
also declared 5 axes, X, Y, Z, throttle and slider you can see them appear.  The above figure shows the 
result of pressing a button on one of the panels.  This switch activates row 4, columns 2, 3, 5, and 8 
which corresponds to switches 26, 27, 29, and 32 as shown.  When programming FSUIPC I had to 
remember that the switches were numbered 0-7, not 1-8.  This was just a little confusing and caused 
some interesting results when I made mistakes with the programming.  I had the program set up to 
generate a pulse so the switches wouldn’t actually stay lit as shown in the above figure; instead they 
would pulse, i.e. stay lit for only a short duration. 
 
Programming 
Appendix B contains the BASIC code for my microcontroller.  There are two files involved; the USB 
descriptor and the PC12 interface.   
 
USB Descriptor 
This was probably the most difficult for me to get right.  The USB descriptor is used during the 
enumeration process to identify the peripheral device to the host, i.e. identify the microcontroller to the 
PC.  This has to be correct, otherwise the microcontroller will not be recognized and you will get a 
device error message.  What I am building with the microcontroller is a human interface device (HID) 
which requires a specific type of descriptor.  I did a lot of research on the Internet regarding USB HID 
descriptors.  I’ve listed those references here: 
 



PC-12 Panels 

 29

• USB Implementers Forum, Inc. www.usb.org – This is where you can find the USB interface 
specifications and everything else you ever wanted to know about USB.  The most useful thing I 
found here was the HID Descriptor Tool which allows you to build the report descriptor.  It also 
comes with examples of different types of report descriptors.  You can use these report 
descriptors instead of the generic report descriptor that the mikroBASIC Pro descriptor tool built.   

• Amr Bekhit, http://www.helmpcb.com/Electronics/USBJoystick/USBJoystick.aspx - This article 
explains how to convert an old joystick that used a joystick port to one that uses a USB port 
using a microcontroller.  This article provided my first breakthrough on creating a valid 
joystick HID descriptor. 

• USB Made Simple, http://www.usbmadesimple.co.uk/index.html - A series of articles on how 
USB works.  The descriptor explanation was outstanding. 

• USB in a Nutshell, http://www.beyondlogic.org/usbnutshell/ - Great article on how USB works, 
especially good explanation of the descriptor. 

 
Creating a valid USB descriptor was probably the most difficult part of the process.  It took me a couple 
of weeks of research and failure until I got it right.  Rather than go into the gory details here, I wrote a 
little document to help others avoid the problems I ran into called PIC and USB which you can 
download and read for yourself.  The important thing to remember is that in the report descriptor you 
must declare whole bytes, i.e. exact multiples of 8 bits, otherwise the MCU will not connect and 
communicate with the PC. 
 

 
Figure 31:  PC12 Panels Inplace 

 

http://www.usb.org
http://www.usb.org/developers/hidpage/
http://www.helmpcb.com/Electronics/USBJoystick/USBJoystick.aspx
http://www.usbmadesimple.co.uk/index.html
http://www.beyondlogic.org/usbnutshell/
http://www.ktgunsmith.com/PIC_and_USB.pdf


PC-12 Panels 

 30

Appendix A:  Wiring Table 
 

Panel Function 
D-Sub 

Connector 

3, 
24 
Col 
8 

3, 
25 
Col 
7 

3, 
26 
Col 
6 

3, 
27 
Col 
5 

3, 
28 
Col 
4 

3, 
29 
Col 
3 

3, 
30 
Col 
2 

3, 
31 
Col 
1 

Diode 
Row 

FUEL/ELEC/START BATT 15-1               1 1 
FUEL/ELEC/START GEN1 15-2             1   1 
FUEL/ELEC/START GEN2 15-3           1     1 
FUEL/ELEC/START EXT 15-4         1       1 
FUEL/ELEC/START AV1 15-5       1         1 
FUEL/ELEC/START AV2 N/C                   
FUEL/ELEC/START INV 15-7     1           1 
FUEL/ELEC/START ESS 15-8   1             1 
FUEL/ELEC/START STBY 15-9 1               1 
FUEL/ELEC/START LH 15-10             1 1 2 
FUEL/ELEC/START RH 15-11         1 1     2 
FUEL/ELEC/START INTRPT N/C                   
FUEL/ELEC/START STRT 15-13     1 1         2 
FUEL/ELEC/START IGNIT 15-14 1 1             2 
FUEL/ELEC/START SW Common 15-15                   
FUEL/ELEC/START +5 2-1                   
FUEL/ELEC/START GND 2-2                   
TEST/LIGHTS/CABIN OVERHD 15-1           1 1   3 
TEST/LIGHTS/CABIN LAMP TEST 15-2       1 1       3 
TEST/LIGHTS/CABIN LAND 15-3   1 1           3 
TEST/LIGHTS/CABIN STROBE 15-4 1             1 3 
TEST/LIGHTS/CABIN NAV 15-5           1   1 4 
TEST/LIGHTS/CABIN RECOG 15-6         1   1   4 
TEST/LIGHTS/CABIN SEAT BELTS 15-7   1   1         4 
TEST/LIGHTS/CABIN PUSHER 15-8 1   1           4 
TEST/LIGHTS/CABIN FIRE 15-9       1       1 5 
TEST/LIGHTS/CABIN TAXI 15-10     1       1   5 
TEST/LIGHTS/CABIN WING 15-11   1       1     5 
TEST/LIGHTS/CABIN BEACON 15-12 1       1       5 
TEST/LIGHTS/CABIN LOGO 15-13         1     1 6 
TEST/LIGHTS/CABIN NO SMKG 15-14       1     1   6 
TEST/LIGHTS/CABIN SW Common 15-15                   
TEMP/DEICE SYS 15-1     1     1     6 
TEMP/DEICE RECIRC 15-2       1   1     7 
TEMP/DEICE HEAT 15-3         1   1 1 7 
TEMP/DEICE 3MIN 15-4 1 1 1           7 
TEMP/DEICE BOOTS ON 15-5     1         1 8 
TEMP/DEICE LH HEAVY 15-6         1 1 1   8 
TEMP/DEICE LH ON 15-7 1 1   1         8 
TEMP/DEICE FANS 15-8 1     1         9 
TEMP/DEICE VENT 15-9           1 1 1 9 
TEMP/DEICE INERT SEP 15-10   1 1   1       9 
TEMP/DEICE PROBE N/C                   
TEMP/DEICE PROP 15-12     1   1       10 
TEMP/DEICE RH HEAVY 15-13   1           1 10 
TEMP/DEICE RH ON 15-14 1           1   10 



PC-12 Panels 

 31

TEMP/DEICE SW Common 15-15                   
GPS PWR N/C                   
GPS OBS 25-2   1         1   11 
GPS MSG 25-3         1 1   1 11 
GPS FPL 25-4 1   1 1         11 
GPS TERR 25-5   1     1       12 
GPS PROC 25-6 1         1     12 
GPS CRSR 25-7       1     1 1 12 
GPS RNG ▲ 25-8       1   1   1 13 
GPS RNG ▼ 25-9     1   1   1   13 
GPS DIRECT 25-10       1   1 1   14 
GPS MENU 25-11     1   1     1 14 
GPS CLR 25-12       1 1     1 15 
GPS ENT 25-13     1     1 1   15 

GPS 
GROUP/PAGE 
SW 25-14       1 1   1   16 

GPS GROUP/PAGE 25-15, 16, 17                   
GPS SW Common 25-25                   
AP DN 15-1     1     1   1 16 
AP HDG 15-2       1 1 1     17 
AP NAV 15-3     1       1 1 17 
AP APR 15-4     1   1 1     18 
AP BC 15-5   1         1 1 18 
AP YD 15-6     1 1       1 19 
AP AP 15-7   1       1 1   19 
AP UP 15-8     1 1     1   20 
AP ALT 15-9   1       1   1 20 
AP IAS 15-10     1 1   1     21 
AP FD 15-11   1     1     1 21 
AP SOFT 15-12     1 1 1       22 
AP HALF 15-13 1           1 1 22 
AP TST 15-14   1     1   1   23 
AP SW Common 15-15                   
ALT/VS/SW ENG 25-1 1         1   1 23 
ALT/VS/SW ARM 25-2   1     1 1     24 
ALT/VS/SW SET SW 25-3 1   1         1 24 
ALT/VS/SW BAR SW N/C                   
ALT/VS/SW AV 25-5   1   1       1 25 
ALT/VS/SW GPS 25-6 1   1       1   25 
ALT/VS/SW GPWS N/C                   
ALT/VS/SW WAAS N/C                   
ALT/VS/SW DME 25-9   1   1     1   26 
ALT/VS/SW NAV/GPS 25-10 1   1     1     26 
ALT/VS/SW APR 25-11   1   1   1     27 
ALT/VS/SW AHRS 25-12   1   1 1       28 
ALT/VS/SW SET 25-14, 15, 16                   
ALT/VS/SW BAR 25-17, 18, 19                   
ALT/VS/SW SW Common 25-25                   
AVIONICS 0 9-1 1     1       1 28 
AVIONICS 1 9-2   1 1         1 29 
AVIONICS 2 9-3 1     1     1   29 
AVIONICS 3 9-4   1 1       1   30 



PC-12 Panels 

 32

AVIONICS 4 9-5 1     1   1     30 
AVIONICS 5 9-6   1 1     1     31 
AVIONICS 6 9-7 1     1 1       31 
AVIONICS 7 9-8   1 1 1         32 
AVIONICS SWAP 9-9 1       1     1 32 
AVIONICS ADF FAST 25-1 1 1     1       33 
AVIONICS COM1 FAST 25-2       1   1 1 1 33 
AVIONICS COM2 FAST 25-3 1         1 1   34 
AVIONICS NAV1 IDEN 25-4     1 1 1     1 34 
AVIONICS NAV1 FAST 25-5 1       1   1   35 
AVIONICS NAV2 IDEN 25-6     1 1   1   1 35 
AVIONICS NAV2 FAST 25-7 1       1 1     36 
AVIONICS ADF 25- 8, 9, 10                   
AVIONICS COM1 25-11, 12, 13                   
AVIONICS COM2 25-14, 15, 16                   
AVIONICS NAV1 25-17, 18, 19                   
AVIONICS NAV2 25-20, 21, 22                   
AVIONICS SW Common 25-25                   
EFIS DH SW 25-1     1 1     1 1 36 
EFIS HSI 25-2 1 1           1 37 
EFIS ARC 25-3       1 1 1 1   37 
EFIS NAV 25-4 1 1         1   38 
EFIS -> 25-5       1 1 1   1 38 
EFIS => 25-6 1 1       1     39 
EFIS 1-2 25-7       1 1   1 1 39 
EFIS HDG FAST 25-8         1 1 1 1 40 
EFIS CRS FAST 25-13 1 1 1 1     40 
EFIS DH 25-14, 15, 16                   
EFIS CRS 25-17, 18, 19                   
EFIS HDG 25-20, 21, 22                   
EFIS SW Common 25-25                   

 



PC-12 Panels 

 33

Appendix B:  Program Code 
 
Descriptor File 
 
module PC12dsc 
 
const USB_VENDOR_ID as word = 0x89DD 
const USB_PRODUCT_ID as word = 0x0002 
const USB_SELF_POWER as char = 0xA0            ' Self powered 0xC0,  0x80 bus powered 
'const USB_SELF_POWER as char = 0x80            ' Self powered 0xC0,  0x80 bus powered 
const USB_MAX_POWER as char = 50               ' Bus power required in units of 2 mA 
const HID_INPUT_REPORT_BYTES as char = 64 
const HID_OUTPUT_REPORT_BYTES as char = 64 
const EP_IN_INTERVAL as char = 1 
const EP_OUT_INTERVAL as char = 1 
 
const USB_INTERRUPT as char = 1 
const USB_TRANSFER_TYPE as char = 0x03         '0x03 Interrupt 
const USB_HID_EP as char = 1 
const USB_HID_RPT_SIZE as char = 85 
 
structure device_descriptor 
    dim bLength as char               ' bLength         - Descriptor size in bytes (12h) 
    dim bDescriptorType as char       ' bDescriptorType - The constant DEVICE (01h) 
    dim bcdUSB as word                ' bcdUSB          - USB specification release number 

(BCD) 
    dim bDeviceClass as char          ' bDeviceClass    - Class Code 
    dim bDeviceSubClass as char       ' bDeviceSubClass - Subclass code 
    dim bDeviceProtocol as char       ' bDeviceProtocol - Protocol code 
    dim bMaxPacketSize0 as char       ' bMaxPacketSize0 - Maximum packet size for endpoint 0 
    dim idVendor as word              ' idVendor        - Vendor ID 
    dim idProduct as word             ' idProduct       - Product ID 
    dim bcdDevice as word             ' bcdDevice       - Device release number (BCD) 
    dim iManufacturer as char         ' iManufacturer   - Index of string descriptor for the 

manufacturer 
    dim iProduct as char              ' iProduct        - Index of string descriptor for the 

product. 
    dim iSerialNumber as char         ' iSerialNumber   - Index of string descriptor for the 

serial number. 
    dim bNumConfigurations as char    ' bNumConfigurations - Number of possible 

configurations 
end structure 
 
const device_dsc as device_descriptor = ( 
  0x12,                   ' bLength 
  0x01,                   ' bDescriptorType 
  0x0200,                 ' bcdUSB 
  0x00,                   ' bDeviceClass 
  0x00,                   ' bDeviceSubClass 
  0x00,                   ' bDeviceProtocol 
  8,                      ' bMaxPacketSize0 
  USB_VENDOR_ID,          ' idVendor 
  USB_PRODUCT_ID,         ' idProduct 
  0x0003,                 ' bcdDevice - Version number 
  0x01,                   ' iManufacturer 
  0x02,                   ' iProduct 
  0x03,                   ' iSerialNumber 
  0x01                    ' bNumConfigurations 
) 
 
' Configuration 1 Descriptor 
const configDescriptor1 as byte[41] = ( 



PC-12 Panels 

 34

    ' Configuration Descriptor 
    0x09,                   ' bLength             - Descriptor size in bytes 
    0x02,                   ' bDescriptorType     - The constant CONFIGURATION (02h) 
    0x29,0x00,              ' wTotalLength        - The number of bytes in the configuration 

descriptor and all of its subordinate descriptors 
    1,                      ' bNumInterfaces      - Number of interfaces in the configuration 
    1,                      ' bConfigurationValue - Identifier for Set Configuration and Get 

Configuration requests 
    0,                      ' iConfiguration      - Index of string descriptor for the 

configuration 
    USB_SELF_POWER,         ' bmAttributes        - Self/bus power and remote wakeup settings 
    USB_MAX_POWER,          ' bMaxPower           - Bus power required in units of 2 mA 
 
    ' Interface Descriptor 
    0x09,                   ' bLength - Descriptor size in bytes (09h) 
    0x04,                   ' bDescriptorType - The constant Interface (04h) 
    0,                      ' bInterfaceNumber - Number identifying this interface 
    0,                      ' bAlternateSetting - A number that identifies a descriptor with 

alternate settings for this bInterfaceNumber. 
    2,                      ' bNumEndpoint - Number of endpoints supported not counting 

endpoint zero 
    0x03,                   ' bInterfaceClass - Class code 
    0,                      ' bInterfaceSubclass - Subclass code 
    0,                      ' bInterfaceProtocol - Protocol code 
    0,                      ' iInterface - Interface string index 
 
    ' HID Class-Specific Descriptor 
    0x09,                   ' bLength         - Descriptor size in bytes. 
    0x21,                   ' bDescriptorType - This descriptor's type: 21h to indicate the 

HID class. 
    0x01,0x01,              ' bcdHID          - HID specification release number (BCD). 
    0x00,                   ' bCountryCode    - Numeric expression identifying the country 

for localized hardware (BCD) or 00h. 
    1,                      ' bNumDescriptors - Number of subordinate report and physical 

descriptors. 
    0x22,                   ' bDescriptorType - The type of a class-specific descriptor that 

follows 
    USB_HID_RPT_SIZE,0x00,  ' wDescriptorLength - Total length of the descriptor identified 

above. 
 
    ' Endpoint Descriptor 
    0x07,                   ' bLength - Descriptor size in bytes (07h) 
    0x05,                   ' bDescriptorType - The constant Endpoint (05h) 
    USB_HID_EP or 0x80,     ' bEndpointAddress - Endpoint number and direction 
    USB_TRANSFER_TYPE,      ' bmAttributes - Transfer type and supplementary information 
    0x40,0x00,              ' wMaxPacketSize - Maximum packet size supported 
    EP_IN_INTERVAL,         ' bInterval - Service interval or NAK rate 
 
    ' Endpoint Descriptor 
    0x07,                   ' bLength - Descriptor size in bytes (07h) 
    0x05,                   ' bDescriptorType - The constant Endpoint (05h) 
    USB_HID_EP,             ' bEndpointAddress - Endpoint number and direction 
    USB_TRANSFER_TYPE,      ' bmAttributes - Transfer type and supplementary information 
    0x40,0x00,              ' wMaxPacketSize - Maximum packet size supported 
    EP_OUT_INTERVAL         ' bInterval - Service interval or NAK rate 
) 
 
structure hid_report_descriptor 
  dim report as char[USB_HID_RPT_SIZE] 
end structure 
 
const hid_rpt_desc as hid_report_descriptor = ( 
 



PC-12 Panels 

 35

(0x05, 0x01,                   ' USAGE_PAGE (Generic Desktop) 
 0x15, 0x00,                   ' LOGICAL_MINIMUM (0) 
 0x09, 0x04,                   ' USAGE (Joystick) 
 0xA1, 0x01,                   ' COLLECTION (Application) 
 0x05, 0x01,                   '   USAGE_PAGE (Generic Desktop) 
 0x05, 0x09,                   '   USAGE_PAGE (Button) 
 0x19, 0x01,                   '   USAGE_MINIMUM (Button 1) 
 0x29, 0x20,                   '   USAGE_MAXIMUM (Button 32) 
 0x15, 0x00,                   '   LOGICAL_MINIMUM (0) 
 0x25, 0x01,                   '   LOGICAL_MAXIMUM (1) 
 0x75, 0x01,                   '   REPORT_SIZE (1) 
 0x95, 0x20,                   '   REPORT_COUNT (32) 
 0x55, 0x00,                   '   UNIT_EXPONENT (0) 
 0x65, 0x00,                   '   UNIT (None) 
 0x81, 0x02,                   '   INPUT (Data,Var,Abs) 
 0x05, 0x01,                   '   USAGE_PAGE (Generic Desktop) 
 0x09, 0x01,                   '   USAGE (Pointer) 
 0x15, 0x00,                   '   LOGICAL_MINIMUM (0) 
 0x26, 0xFF, 0x00,             '   LOGICAL_MAXIMUM (255) 
 0x75, 0x08,                   '   REPORT_SIZE (8) 
 0xA1, 0x00,                   '   COLLECTION (Physical) 
 0x09, 0x30,                   '     USAGE (X) 
 0x09, 0x31,                   '     USAGE (Y) 
 0x09, 0x32,                   '     USAGE (Z) 
 0x95, 0x03,                   '     REPORT_COUNT (3) 
 0x81, 0x02,                   '     INPUT (Data Var Abs) 
 0xC0,                         '   END_COLLECTION 
 0x05,0x02,                    '   USAGE_PAGE (Simulation Controls) 
 0x09,0xBB,                    '   USAGE (Throttle) 
 0x15, 0x00,                   '   LOGICAL_MINIMUM (0) 
 0x26, 0xFF, 0x00,             '   LOGICAL_MAXIMUM (255) 
 0x75, 0x08,                   '   REPORT_SIZE (8) 
 0x95, 0x01,                   '   REPORT_COUNT (1) 
 0x81, 0x02,                   '   INPUT (Data Var Abs) 
 0x05, 0x01,                   '   USAGE_PAGE (Generic Desktop) 
 0x09, 0x36,                   '   USAGE (Slider) 
 0x15, 0x00,                   '   LOGICAL_MINIMUM (0) 
 0x26, 0xFF, 0x00,             '   LOGICAL_MAXIMUM (255) 
 0x75, 0x08,                   '   REPORT_SIZE (8) 
 0x95, 0x01,                   '   REPORT_COUNT (1) 
 0x81, 0x02,                   '   INPUT (Data,Var,Abs) 
 0xC0)                         ' END_COLLECTION 
) 
 
'Language code string descriptor 
structure str1 
  dim bLength as char 
  dim bDscType as char 
  dim wString as word[1] 
end structure 
 
const strd1 as str1 = ( 
  4, 
  0x03, 
  (0x0409) 
) 
 
'Manufacturer string descriptor 
structure str2 
  dim bLength as char 
  dim bDscType as char 
  dim wString as word[16] 
end structure 



PC-12 Panels 

 36

 
const strd2 as str2 = ( 
  14,           'sizeof this descriptor string 
  0x03, 
  ("8"," ","B","i","t","s") 
) 
 
'Product string descriptor 
structure str3 
  dim bLength as char 
  dim bDscType as char 
  dim wString as word[23] 
end structure 
 
const strd3 as str3 = ( 
  30,           'sizeof this descriptor string 
  0x03, 
  ("P","C","1","2"," ","I","n","t","e","r","f","a","c","e") 
) 
 
'Serial number string descriptor 
structure str4 
  dim bLength as char 
  dim bDscType as char 
  dim wString as word[10] 
end structure 
 
const strd4 as str4 = ( 
  20,           'sizeof this descriptor string 
  0x03, 
  ("P","C","1","2","-","0","0","0","1") 
) 
 
dim USB_config_dsc_ptr as ^const char[1] 
 
dim USB_string_dsc_ptr as ^const char[4] 
 
sub procedure USB_Init_desc() 
 
implements 
  sub procedure USB_Init_desc() 
    USB_config_dsc_ptr[0] = @configDescriptor1 
    USB_string_dsc_ptr[0] = ^const char(@strd1) 
    USB_string_dsc_ptr[1] = ^const char(@strd2) 
    USB_string_dsc_ptr[2] = ^const char(@strd3) 
    USB_string_dsc_ptr[3] = ^const char(@strd4) 
  end sub 
end. 



PC-12 Panels 

 37

Program File 
I am using three types of switches on my panels; each one has to be handled differently by the 
microcontroller.  First I read rows 1 - 3.  These rows are only connected to rotary switches so I first 
determine which direction the switch moved and toggle the appropriate bit in the USB write buffer.  It is 
possible to leave a rotary switch in a position were contacts A and/or B are closed, i.e. connected to the 
common pin.  Therefore, after a specific duration I reset the bits giving a pulse rather than leaving a bit 
set all the time. 
 
Row 4 is only connected to momentary contact, push-button switches via the diode matrix previously 
described.  I read row four and put the inverted data into the USB write buffer.  When I press a switch 
the corresponding columns come on and stay on until I remove my finger from the button.   
 
Finally I read the 8 toggle switch inputs and determine which one changed.  Depending on which toggle 
switch changed I sent a pulse for that switch. 
 
' * 
' * Project name: 
'     PC12 Interface 
' * Copyright: 
'     (c) Roy Seifert, 2011 
' * Revision History: 
'     20110427: 
'       - initial release; 
' * Description: 
'     This firmware reads a 4 x 8 switch matrix.  The first 24 switches are 
'     connected to rotary switches, the last 8 are tied to a diode matrix 
'     which allows up to 255 switches to be connected. 
' 
' * Test configuration: 
'     MCU:             PIC18F2455 
'                      http://ww1.microchip.com/downloads/en/DeviceDoc/39632D.pdf 
'     Dev.Board:       EasyPIC6 
'                      http://www.mikroe.com/en/tools/easypic6/ 
'     Oscillator:      HS 8.000 MHz  (USB osc. is raised with PLL to 48.000MHz) 
'     Ext. Modules:    on-board USB-HID 
'                      http://www.mikroe.com/pdf/easypic6/easypic6_manual_v100.pdf 
'     SW:              mikrobasic  PRO for PIC 
'                      http://www.mikroe.com/en/compilers/mikrobasic/pro/pic/ 
' * NOTES: 
'     (*) Be VERY careful about the configuration flags for the 18F2455 - there"s 
'       so much place for mistake! 
'     - Place jumpers J12 in the right position 
' 
' RA5, RA3 - RA0 analog inputs 
' RB7 - RB0 input with pullup 
' RC7 - RC6 poll output 
' RC1 - RC0 poll output 
 
program Rotary_Interface 
 
   dim col1          as sbit at PORTB.7  ' Port declarations 
   dim col2          as sbit at PORTB.6 
   dim col3          as sbit at PORTB.5 
   dim col4          as sbit at PORTB.4 
   dim col5          as sbit at PORTB.3 
   dim col6          as sbit at PORTB.2 
   dim col7          as sbit at PORTB.1 
   dim col8          as sbit at PORTB.0 



PC-12 Panels 

 38

   dim row1          as sbit at LATC.7   ' Rotary switch output 
   dim row2          as sbit at LATC.6   ' Rotary switch output 
   dim row3          as sbit at LATC.1   ' Rotary switch output 
   dim row4          as sbit at LATC.0   ' Digital switch output 
   dim toggle1       as sbit at PORTE.3  ' Toggle switch inputs 
   dim toggle2       as sbit at PORTA.0 
   dim toggle3       as sbit at PORTA.1 
   dim toggle4       as sbit at PORTA.2 
   dim toggle5       as sbit at PORTA.3 
   dim toggle6       as sbit at PORTA.4 
   dim toggle7       as sbit at PORTA.5 
   dim toggle8       as sbit at PORTC.2 
   dim adc_in        as word             ' Axis analog input 
   dim switches      as byte[5]          ' Switch data 
   dim oldswitches   as byte[5]          ' Old switch data 
   dim userWR_buffer as byte[64] absolute 0x500         ' USB write buffer 
   dim userRD_buffer as byte[64] absolute 0x540         ' USB read buffer 
   dim temp          as byte             ' Temporary storage 
   dim count         as integer          ' General purpose counter 
   dim passcount     as integer          ' Used to clear switches 
   dim pulse         as integer          ' Pulse duration 
   dim swmoved       as boolean          ' Switch moved flag 
   dim togglemoved   as boolean          ' Toggle switch moved flag 
 
'****************************************************************************** 
' Main Interrupt Routine 
'****************************************************************************** 
sub procedure interrupt 
   USB_Interrupt_Proc 
end sub 
'****************************************************************************** 
 
'****************************************************************************** 
' Initialization Routine 
'****************************************************************************** 
sub procedure Init 
  '-------------------------------------- 
  ' Disable interrupts 
  '-------------------------------------- 
   INTCON  = 0x00                         ' Disable GIE, PEIE, TMR0IE, INT0IE, RBIE 
   INTCON2 = 0x75                         ' Turn on PORTB pull-ups, RB interrupts high 

priority 
   INTCON3 = 0xC0                         ' High priority interrupts 
   RCON.IPEN = 0                          ' Disable Priority Levels on interrupts 
   PIE1 = 0 
   PIE2 = 0 
   PIR1 = 0 
   PIR2 = 0 
   ADCON1 = 0x0F                          ' All analog inputs digital 
   '-------------------------------------- 
   ' Ports Configuration 
   ' RA5 - RA0 toggle switch inputs 
   ' RB7 - RB0 input with pullup 
   ' RC7 - RC6 poll output 
   ' RC2 - toggle switch input 
   ' RC1 - RC0 poll output 
   ' RE3 - toggle switch input 
 
   '-------------------------------------- 
   ' TRIS bits:  1 = input, 0 = output 
   TRISA = %00111111                      ' PORTA 7:6 output, 5 input, 4 output, 3:0 input 
   TRISB = %11111111                      ' PORTB all input 
   TRISC = %00000100                      ' PORTC 7:3 output, 2 input, 1:0 output 



PC-12 Panels 

 39

'   TRISD = 0xFF 
'   TRISE = 0x07 
 
   LATA = 0x00 
   LATB = 0x00 
   LATC = 0xC3                            ' All rows high 
'   LATD = 0 
'   LATE = 0 
 
   pulse = 6                              ' Adjust to change switch pulse duration 
   swmoved = false                        ' Reset all flags 
   togglemoved = false 
   count = 0 
end sub 
 
'****************************************************************************** 
' Main Program Routine 
'****************************************************************************** 
main: 
   Init 
 
   userWR_buffer[0] = 0                   ' Initialize the USB write buffer 
   userWR_buffer[1] = 0 
   userWR_buffer[2] = 0 
   userWR_buffer[3] = 0 
   count = 0 
 
   HID_Enable(@userRD_buffer, @userWR_buffer) 
 
   while true 
 
         ' Read axis inputs 
         ' Read AN0 
         adc_in = adc_read(0) 
         adc_in = adc_in/4 
         userWR_buffer[4] = adc_in 
 
         ' Read AN1 
         adc_in = adc_read(1) 
         adc_in = adc_in/4 
         userWR_buffer[5] = adc_in 
 
         ' Read AN2 
         adc_in = adc_read(2) 
         adc_in = adc_in/4 
         userWR_buffer[6] = adc_in 
 
         ' Read AN3 
         adc_in = adc_read(3) 
         adc_in = adc_in/4 
         userWR_buffer[7] = adc_in 
 
         ' Read AN4 
         adc_in = adc_read(4) 
         adc_in = adc_in/4 
         userWR_buffer[8] = adc_in 
 
      ' Read switches 
      row2 = 0                           ' Read row 2 rotary switches 
      delay_us(1500)                     ' Debounce delay 
      switches[2] = PORTB 
      row2 = 1 
      if switches[2] <> oldswitches[2] then 



PC-12 Panels 

 40

         count = count + 1 
         if count = 2 then 
            swmoved = true 
'            row2moved = true 
            ' Find which input changed 
            temp = switches[2] xor oldswitches[2] 
            select case temp 
               case 0x80 
                  if (switches[2].7 <> switches[2].6) then 
                     userWR_buffer[1].1 = not userWR_buffer[1].1 
                     userWR_buffer[1].0 = 0 
                  else 
                     userWR_buffer[1].0 = not userWR_buffer[1].0 
                     userWR_buffer[1].1 = 0 
                  end if 
'               case 0x40 
'                  if (switches[2].7 = switches[2].6) then 
'                     userWR_buffer[1].1 = not userWR_buffer[1].1 
'                     userWR_buffer[1].0 = 0 
'                  else 
'                     userWR_buffer[1].0 = not userWR_buffer[1].0 
'                     userWR_buffer[1].1 = 0 
'                  end if 
               case 0x20 
                  if (switches[2].5 <> switches[2].4) then 
                     userWR_buffer[1].3 = not userWR_buffer[1].3 
                     userWR_buffer[1].2 = 0 
                  else 
                     userWR_buffer[1].2 = not userWR_buffer[1].2 
                     userWR_buffer[1].3 = 0 
                  end if 
'               case 0x10 
'                  if (switches[2].5 = switches[2].4) then 
'                     userWR_buffer[1].3 = not userWR_buffer[1].3 
'                     userWR_buffer[1].2 = 0 
'                  else 
'                     userWR_buffer[1].2 = not userWR_buffer[1].2 
'                     userWR_buffer[1].3 = 0 
'                  end if 
               case 0x08 
                  if (switches[2].3 <> switches[2].2) then 
                     userWR_buffer[1].5 = not userWR_buffer[1].5 
                     userWR_buffer[1].4 = 0 
                  else 
                     userWR_buffer[1].4 = not userWR_buffer[1].4 
                     userWR_buffer[1].5 = 0 
                  end if 
'               case 0x04 
'                  if (switches[2].3 = switches[2].2) then 
'                     userWR_buffer[1].5 = not userWR_buffer[1].5 
'                     userWR_buffer[1].4 = 0 
'                  else 
'                     userWR_buffer[1].4 = not userWR_buffer[1].4 
'                     userWR_buffer[1].5 = 0 
'                  end if 
               case 0x02 
                  if (switches[2].1 <> switches[2].0) then 
                     userWR_buffer[1].7 = not userWR_buffer[1].7 
                     userWR_buffer[1].6 = 0 
                  else 
                     userWR_buffer[1].6 = not userWR_buffer[1].6 
                     userWR_buffer[1].7 = 0 
                  end if 



PC-12 Panels 

 41

'               case 0x01 
'                  if (switches[2].1 = switches[2].0) then 
'                     userWR_buffer[1].7 = not userWR_buffer[1].7 
'                     userWR_buffer[1].6 = 0 
'                  else 
'                     userWR_buffer[1].6 = not userWR_buffer[1].6 
'                     userWR_buffer[1].7 = 0 
'                  end if 
            end select 
            passcount = 0 
            oldswitches[2] = switches[2] 
            count = 0 
         end if 
      end if 
 
      row3 = 0                           ' Read row 3 rotary switch 
      delay_us(1500)                     ' Debounce delay 
      switches[3] = PORTB 
      row3 = 1 
      if switches[3] <> oldswitches[3] then 
         count = count + 1 
         if count = 2 then 
            swmoved = true 
'            row3moved = true 
            ' Find which input changed 
            temp = switches[3] xor oldswitches[3] 
            select case temp 
               case 0x80 
                  if (switches[3].7 <> switches[3].6) then 
                     userWR_buffer[2].1 = not userWR_buffer[2].1 
                     userWR_buffer[2].0 = 0 
                  else 
                     userWR_buffer[2].0 = not userWR_buffer[2].0 
                     userWR_buffer[2].1 = 0 
                  end if 
'               case 0x40 
'                  if (switches[3].7 = switches[3].6) then 
'                     userWR_buffer[2].1 = not userWR_buffer[2].1 
'                     userWR_buffer[2].0 = 0 
'                  else 
'                     userWR_buffer[2].0 = not userWR_buffer[2].0 
'                     userWR_buffer[2].1 = 0 
'                  end if 
               case 0x20 
                  if (switches[3].5 <> switches[3].4) then 
                     userWR_buffer[2].3 = not userWR_buffer[2].3 
                     userWR_buffer[2].2 = 0 
                  else 
                     userWR_buffer[2].2 = not userWR_buffer[2].2 
                     userWR_buffer[2].3 = 0 
                  end if 
'               case 0x10 
'                  if (switches[3].5 = switches[3].4) then 
'                     userWR_buffer[2].3 = not userWR_buffer[2].3 
'                     userWR_buffer[2].2 = 0 
'                  else 
'                     userWR_buffer[2].2 = not userWR_buffer[2].2 
'                     userWR_buffer[2].3 = 0 
'                  end if 
               case 0x08 
                  if (switches[3].3 <> switches[3].2) then 
                     userWR_buffer[2].5 = not userWR_buffer[2].5 
                     userWR_buffer[2].4 = 0 



PC-12 Panels 

 42

                  else 
                     userWR_buffer[2].4 = not userWR_buffer[2].4 
                     userWR_buffer[2].5 = 0 
                  end if 
'               case 0x04 
'                  if (switches[3].3 = switches[3].2) then 
'                     userWR_buffer[2].5 = not userWR_buffer[2].5 
'                     userWR_buffer[2].4 = 0 
'                  else 
'                     userWR_buffer[2].4 = not userWR_buffer[2].4 
'                     userWR_buffer[2].5 = 0 
'                  end if 
               case 0x02 
                  if (switches[3].1 <> switches[3].0) then 
                     userWR_buffer[2].7 = not userWR_buffer[2].7 
                     userWR_buffer[2].6 = 0 
                  else 
                     userWR_buffer[2].6 = not userWR_buffer[2].6 
                     userWR_buffer[2].7 = 0 
                  end if 
'               case 0x01 
'                  if (switches[3].1 = switches[3].0) then 
'                     userWR_buffer[2].7 = not userWR_buffer[2].7 
'                     userWR_buffer[2].6 = 0 
'                  else 
'                     userWR_buffer[2].6 = not userWR_buffer[2].6 
'                     userWR_buffer[2].7 = 0 
'                  end if 
            end select 
            passcount = 0 
            oldswitches[3] = switches[3] 
            count = 0 
         end if 
      end if 
 
      row1 = 0                           ' Read row 1 rotary switches 
      delay_us(1500)                     ' Debounce delay 
      switches[1] = PORTB                ' Read 8 column bits 
      row1 = 1                           ' Set row 1 high 
      if switches[1] <> oldswitches[1] then ' Check to see of a switch moved 
         count = count + 1 
         if count = 2 then 
            swmoved = true                  ' Set switch moved flag 
            ' Find which input changed 
            temp = switches[1] xor oldswitches[1] 
            select case temp 
               case 0x80                    ' Rotary A input changed 
                  if (switches[1].7 <> switches[1].6) then ' Rotary switch moved clockwise 
                     userWR_buffer[0].1 = not userWR_buffer[0].1 
                     userWR_buffer[0].0 = 0 
                  else                                     ' Rotary switch moved counter 

clockwise 
                     userWR_buffer[0].0 = not userWR_buffer[0].0 
                     userWR_buffer[0].1 = 0 
                  end if 
'               case 0x40                    ' Rotary B input changed 
'                  if (switches[1].7 = switches[1].6) then ' Rotary switch moved clockwise 
'                     userWR_buffer[0].1 = not userWR_buffer[0].1 
'                     userWR_buffer[0].0 = 0 
'                  else                                     ' Rotary switch moved counter 

clockwise 
'                     userWR_buffer[0].0 = not userWR_buffer[0].0 
'                     userWR_buffer[0].1 = 0 



PC-12 Panels 

 43

'                  end if 
               case 0x20 
                  if (switches[1].5 <> switches[1].4) then ' Rotary switch moved clockwise 
                     userWR_buffer[0].3 = not userWR_buffer[0].3 
                     userWR_buffer[0].2 = 0 
                  else                                     ' Rotary switch moved counter 

clockwise 
                     userWR_buffer[0].2 = not userWR_buffer[0].2 
                     userWR_buffer[0].3 = 0 
                  end if 
'               case 0x10 
'                  if (switches[1].5 = switches[1].4) then ' Rotary switch moved clockwise 
'                     userWR_buffer[0].3 = not userWR_buffer[0].3 
'                     userWR_buffer[0].2 = 0 
'                  else                                     ' Rotary switch moved counter 

clockwise 
'                     userWR_buffer[0].2 = not userWR_buffer[0].2 
'                     userWR_buffer[0].3 = 0 
'                  end if 
               case 0x08 
                  if (switches[1].3 <> switches[1].2) then ' Rotary switch moved clockwise 
                     userWR_buffer[0].5 = not userWR_buffer[0].5 
                     userWR_buffer[0].4 = 0 
                  else                                     ' Rotary switch moved counter 

clockwise 
                     userWR_buffer[0].4 = not userWR_buffer[0].4 
                     userWR_buffer[0].5 = 0 
                  end if 
'               case 0x04 
'                  if (switches[1].3 = switches[1].2) then ' Rotary switch moved clockwise 
'                     userWR_buffer[0].5 = not userWR_buffer[0].5 
'                     userWR_buffer[0].4 = 0 
'                  else                                     ' Rotary switch moved counter 

clockwise 
'                     userWR_buffer[0].4 = not userWR_buffer[0].4 
'                     userWR_buffer[0].5 = 0 
'                  end if 
               case 0x02 
                  if (switches[1].1 <> switches[1].0) then ' Rotary switch moved clockwise 
                     userWR_buffer[0].7 = not userWR_buffer[0].7 
                     userWR_buffer[0].6 = 0 
                  else                                     ' Rotary switch moved counter 

clockwise 
                     userWR_buffer[0].6 = not userWR_buffer[0].6 
                     userWR_buffer[0].7 = 0 
                  end if 
'               case 0x01 
'                  if (switches[1].1 = switches[1].0) then ' Rotary switch moved clockwise 
'                     userWR_buffer[0].7 = not userWR_buffer[0].7 
'                     userWR_buffer[0].6 = 0 
'                  else                                     ' Rotary switch moved counter 

clockwise 
'                     userWR_buffer[0].6 = not userWR_buffer[0].6 
'                     userWR_buffer[0].7 = 0 
'                  end if 
            end select 
            passcount = 0                ' Reset pass counter for switch pulse 
            oldswitches[1] = switches[1] ' Prepare to for next pass 
            count = 0 
         end if 
      end if 
 
      row4 = 0                           ' Read row 4 push-button switches 



PC-12 Panels 

 44

      delay_ms(3)                        ' Debounce delay 
      switches[4] = PORTB                ' Read port B 
      row4 = 1                           ' Set row 4 high to stop reading switches 
      if switches[4] <> oldswitches[4] then ' Check if a switch moved 
         swmoved = true 
         userWR_buffer[3] = not switches[4] ' Set USB write buffer to switches 
         passcount = 0                   ' Reset pass count for switch pulse 
         oldswitches[4] = switches[4]    ' Prepare for next pass 
      end if 
 
      switches[0].0 = toggle1            ' Read toggle switches 
      switches[0].1 = toggle2            ' Read toggle switches 
      switches[0].2 = toggle3            ' Read toggle switches 
      switches[0].3 = toggle4            ' Read toggle switches 
      switches[0].4 = toggle5            ' Read toggle switches 
      switches[0].5 = toggle6            ' Read toggle switches 
      switches[0].6 = toggle7            ' Read toggle switches 
      switches[0].7 = toggle8            ' Read toggle switches 
      if switches[0] <> oldswitches[0] then ' Check if a switch moved 
         swmoved = true 
         temp = oldswitches[0] xor switches[0] 
         if temp <> 0 then 
            togglemoved = true 
         else 
             togglemoved = false 
         end if 
         select case temp 
            case 0x80 
                userWR_buffer[3].0 = 1 
            case 0x40 
                userWR_buffer[3].1 = 1 
            case 0x20 
                userWR_buffer[3].2 = 1 
            case 0x10 
                userWR_buffer[3].3 = 1 
            case 0x08 
                userWR_buffer[3].4 = 1 
            case 0x04 
                userWR_buffer[3].5 = 1 
            case 0x02 
                userWR_buffer[3].6 = 1 
            case 0x01 
                userWR_buffer[3].7 = 1 
         end select 
         passcount = 0                   ' Reset pass count for switch pulse 
         oldswitches[0] = switches[0]    ' Prepare for next pass 
      end if 
 
      if swmoved = true then             ' A switch moved 
         passcount = passcount + 1       ' Increment pass counter for pulse 
         if passcount = pulse then       ' Pass counter = pulse duration 
            userWR_buffer[0]=0x00        ' Initialize the USB write buffer to all 0 
            userWR_buffer[1]=0x00 
            userWR_buffer[2]=0x00 
            if togglemoved = true then 
               userWR_buffer[3]=0x00 
               togglemoved = false 
            end if 
            passcount = 0                ' Reset pass counter 
            swmoved = false              ' Reset switch moved flag 
         end if 
      end if 
 



PC-12 Panels 

 45

      HID_Write(@userWR_buffer, 9)       ' Send data onto USB bus 
 
   wend 
   HID_Disable() 
end. 



PC-12 Panels 

 46

Appendix C:  FSUIPC Button Programming 
 
I did some special programming for the rotary switches.  Each rotary switch has a momentary contact 
switch that is activated by pressing the knob.  Pressing the switch toggles a flag.  Each switch available 
in FSUIPC has a corresponding flag.  However, I can set, reset, or toggle a switch flag whether the real 
switch exists or not.  A flag is identified as J15B3 which is joystick #15 (which doesn’t exist), button #3.  
I use flags as follows: 
 

Rotary Switch Switch Action Rotary Function 
GPS Group/Page Toggle J15B0 Change group or page 
Alt/VS Hold Set Run macro #32 Change altitude or vertical speed 

value 
Barometer None Change kohlsman value 
ADF Toggle J15B1 Change tenths or tens frequency 
COM1 Toggle J15B3 Change decimal or ones 

frequency 
COM2 Toggle J15B4 Change decimal or ones 

frequency 
NAV1 Toggle J15B5 Change decimal or ones 

frequency 
NAV2 Toggle J15B6 Change decimal or ones 

frequency 
DH (decision height adjust) Run macro #56 Make DH visible on EADI 
CRS Toggle J15B7 Change OBS indicator fast or 

slow 
HDG Toggle J15B8 Change heading bug fast or slow 
 
Each radio, including the ADF had a standby and active frequency.  Moving the rotary switch only 
changed the standby frequency.  I only have one SWAP button on my radio panel, so I programmed 
FSUIPC that whenever I change a frequency I set a flag for that radio, and reset all the other radio’s 
flags.  Depending on which flag was set the swap button swapped that radio’s frequency between 
standby and active. 
 
[Buttons] 
ButtonRepeat=20,10 
PollInterval=25 
 
[Profile.PC12] 
1=F1_Pilatus_PC-12 N89DD 
 
[Buttons.PC12] 
1=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(-3,29)(-3,31)3,30,C1005,3840 ;GPSGRP/PGSW toggleflag  

J15B0 
2=CP(F-15,0)3,1,C66625,0 ;GPSGroupInc 
3=CP(F+15,0)3,1,C66627,0 ;GPSPageInc 
4=CP(F-15,0)3,0,C66626,0 ;GPSGroupDec 
5=CP(F+15,0)3,0,C66628,0 ;GPSPageDec 
6=P3,3,CM1:57,0 ;up 
7=P3,2,CM1:58,0 ;dn 
8=P3,5,C65883,0 ;Kohlsman inc 
9=P3,4,C65884,0 ;Kohlsman dec 



PC-12 Panels 

 47

14=P3,6,C1003,3850 ;SetADFmovedflag 
15=P3,6,C1004,3851 ;ResetCOM1movedflag 
16=P3,6,C1004,3852 ;ResetCOM2movedflag 
17=P3,6,C1004,3853 ;ResetNAV1movedflag 
18=P3,6,C1004,3854 ;ResetNAV2movedflag 
19=P3,7,C1003,3850 ;SetADFmovedflag 
20=P3,7,C1004,3851 ;ResetCOM1movedflag 
21=P3,7,C1004,3852 ;ResetCOM2movedflag 
22=P3,7,C1004,3853 ;ResetNAV1movedflag 
23=P3,7,C1004,3854 ;ResetNAV2movedflag 
30=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(+3,29)(+3,30)3,31,C1005,3843 ;COM1FASTtoggleJ15,B3 
31=P3,8,C1004,3850 ;ResetADFmovedflag 
32=P3,8,C1003,3851 ;SetCOM1movedflag 
33=P3,8,C1004,3852 ;ResetCOM2movedflag 
34=P3,8,C1004,3853 ;ResetNAV1movedflag 
35=P3,8,C1004,3854 ;ResetNAV2movedflag 
36=P3,9,C1004,3850 ;ResetADFmovedflag 
37=P3,9,C1003,3851 ;SetCOM1movedflag 
38=P3,9,C1004,3852 ;ResetCOM2movedflag 
39=P3,9,C1004,3853 ;ResetNAV1movedflag 
40=P3,9,C1004,3854 ;ResetNAV2movedflag 
41=CP(F-15,3)3,8,C66434,0 ;COM1FracDec 
42=CP(F-15,3)3,9,C66435,0 ;COM1FracInc 
43=CP(F+15,3)3,8,C65636,0 ;COM1WholeDec 
44=CP(F+15,3)3,9,C65637,0 ;COM1WholeInc 
45=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,31)3,30,C1005,3844 ;COM2FASTtoggleJ15,B4 
46=P3,10,C1004,3850 ;ResetADFmovedflag 
47=P3,10,C1004,3851 ;ResetCOM1movedflag 
48=P3,10,C1003,3852 ;SetCOM2movedflag 
49=P3,10,C1004,3853 ;ResetNAV1movedflag 
50=P3,10,C1004,3854 ;ResetNAV2movedflag 
51=P3,11,C1004,3850 ;ResetADFmovedflag 
52=P3,11,C1004,3851 ;ResetCOM1movedflag 
53=P3,11,C1003,3852 ;SetCOM2movedflag 
54=P3,11,C1004,3853 ;ResetNAV1movedflag 
55=P3,11,C1004,3854 ;ResetNAV2movedflag 
56=CP(F-15,4)3,10,C66439,0 ;COM2FracDec 
57=CP(F-15,4)3,11,C66441,0 ;COM2FracInc 
58=CP(F+15,4)3,10,C66436,0 ;COM2WholeDec 
59=CP(F+15,4)3,11,C66437,0 ;COM2WholeInc 
60=CP(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,31)3,30,C1005,3845 ;NAV1FASTtoggleJ15,B5 
61=P3,12,C1004,3850 ;ResetADFmovedflag 
62=P3,12,C1004,3851 ;ResetCOM1movedflag 
63=P3,12,C1004,3852 ;ResetCOM2movedflag 
64=P3,12,C1003,3853 ;SetNAV1movedflag 
65=P3,12,C1004,3854 ;ResetNAV2movedflag 
66=P3,13,C1004,3850 ;ResetADFmovedflag 
67=P3,13,C1004,3851 ;ResetCOM1movedflag 
68=P3,13,C1004,3852 ;ResetCOM2movedflag 
69=P3,13,C1003,3853 ;SetNAV1movedflag 
70=P3,13,C1004,3854 ;ResetNAV2movedflag 
71=CP(F-15,5)3,12,C66445,0 ;NAV1FracDec 
72=CP(F-15,5)3,13,C66446,0 ;NAV1FracInc 
73=CP(F+15,5)3,12,C65640,0 ;NAV1WholeDec 
74=CP(F+15,5)3,13,C65641,0 ;NAV1WholeInc 
75=CP(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,31)(-3,30)3,29,C1005,3846 ;NAV2FASTtoggleJ15,B6 
76=P3,14,C1004,3850 ;ResetADFmovedflag 
77=P3,14,C1004,3851 ;ResetCOM1movedflag 
78=P3,14,C1004,3852 ;ResetCOM2movedflag 
79=P3,14,C1004,3853 ;ResetNAV1movedflag 
80=P3,14,C1003,3854 ;SetNAV2movedflag 
81=P3,15,C1004,3850 ;ResetADFmovedflag 
82=P3,15,C1004,3851 ;ResetCOM1movedflag 



PC-12 Panels 

 48

83=P3,15,C1004,3852 ;ResetCOM2movedflag 
84=P3,15,C1004,3853 ;ResetNAV1movedflag 
85=P3,15,C1003,3854 ;SetNAV2movedflag 
86=CP(F-15,6)3,14,C66449,0 ;NAV2FracDec 
87=CP(F-15,6)3,15,C66450,0 ;NAV2FracInc 
88=CP(F+15,6)3,14,C65644,0 ;NAV2WholeDec 
89=CP(F+15,6)3,15,C65645,0 ;NAV2WholeInc 
90=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,28)(-3,29)(+3,30)3,31,CM1:56,0 ;DH Visible 
91=P3,17,CM1:54,0 ;DH Inc 
92=P3,16,CM1:55,0 ;DH Dec 
93=CP(+3,24)(+3,25)(+3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,C1005,3847 ;CRSFASTtoggleJ15B7 
94=CP(F-15,7)3,19,C65663,0 ;OBS Inc 
95=CP(F-15,7)3,18,C65662,0 ;OBS Dec 
96=CP(F+15,7)3,19,C66368,0 ;OBS Inc Fast 
97=CP(F+15,7)3,18,C1026,0 ;PBS Dec Fast 
98=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(+3,29)(+3,30)3,31,C1005,3848 ;HDGFASTtoggleJ15B8 
99=CP(F-15,8)3,21,C65879,0 ;Hdg bug inc 
100=CP(F-15,8)3,20,C65880,0 ;Hdg bug dec 
101=CP(F+15,8)3,21,C1025,0 ;Hdg bug inc fast 
102=CP(F+15,8)3,20,C1024,0 ;Hdg bug dec fast 
103=CP(+3,24)(+3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3,30)3,28,C1005,3841 ;ADFFASTsetJ15,B1 
104=;CP(F+15,1)(F-15,2)(+3,24)(+3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3 
105=;CP(F+15,1)(F+15,2)(+3,24)(+3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3 
107=;CP(F-15,1)(F+15,2)(+3,24)(+3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3 
108=CP(F-15,1)3,6,CM1:49,0 ;ADF frac dec carry 
109=CP(F-15,1)3,7,CM1:48,0 ;ADF frac inc carry 
110=;CP(F+15,1)(F-15,2)3,6,CM1:51,0 ;ADF 1 dec 
111=;CP(F+15,1)(F-15,2)3,7,CM1:50,0 ;ADF 1 inc 
112=CP(F+15,1)3,6,CM1:53,0 ;ADF 10 dec 
113=CP(F+15,1)3,7,CM1:52,0 ;ADF 10 inc 
114=;CP(F-15,1)(F+15,2)3,6,CM1:53,0 ;ADF 10 dec 
115=;CP(F-15,1)(F+15,2)3,7,CM1:52,0 ;ADF 10 inc 
201=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,C66241,0 ;togglemasterbatt 
202=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,C66242,0 ;togglemasteralt 
203=CP(-3,24)(-3,25)(-3,26)(-3,28)(-3,29)(-3,30)(-3,31)3,27,CM1:1,0 ;toggleGen2 
204=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,29)(-3,30)(-3,31)3,28,CM1:2,0 ;toggleExt 
205=CP(-3,24)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)(-3,31)3,25,C66293,0 ;toggleavionicsmaster 
206=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,30)(-3,31)3,29,CM1:3,0 ;toggleInv 
207=CP(-3,24)(-3,25)(-3,27)(-3,28)(-3,29)(-3,30)(-3,31)3,26,CM1:4,0 ;toggleESS 
208=CP(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)(-3,31)3,24,CM1:5,0 ;toggleStby 
209=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(+3,30)3,31,CM1:6,0 ;togglefuelpumpLH 
210=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,30)(-3,31)3,29,CM1:7,0 ;togglefuelpumpRH 
211=CP(-3,24)(-3,25)(+3,26)(-3,28)(-3,29)(-3,30)(-3,31)3,27,CM1:8,0 ;togglestarter 
212=CP(+3,24)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)(-3,31)3,25,CM1:9,0 ;toggleIgnition 
213=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,31)3,30,C65909,0 ;Panel4OVERHD 
214=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,31)(-3,29)(-3,30)3,28,CM1:10,0 ;LAMPTEST 
215=CP(-3,24)(+3,25)(-3,31)(-3,27)(-3,28)(-3,29)(-3,30)3,26,C66240,0 ;LAND 
216=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,C65560,0 ;STROBE 
217=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,30)3,31,C66379,0 ;NAV 
218=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,31)3,30,C66377,0 ;RECOG 
219=CP(-3,24)(+3,25)(-3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,CM1:13,0 ;SEATBELTS 
220=CP(+3,24)(-3,25)(-3,31)(-3,27)(-3,28)(-3,29)(-3,30)3,26,CM1:11,0 ;PUSHER 
221=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,29)(-3,30)3,31,CM1:12,0 ;FIRE 
222=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,C65751,0 ;TAXI 
223=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,C66378,0 ;WING 
224=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3,30)3,28,C66239,0 ;BEACON 
225=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66376,0 ;LOGO 
226=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,29)(-3,31)3,30,CM1:14,0 ;NOSMKG 
227=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,CM1:16,0 ;SYS 
228=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,31)(-3,30)3,29,CM1:17,0 ;RECIRC 
229=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(+3,30)3,31,CM1:15,0 ;HEAT 
230=CP(+3,24)(+3,25)(-3,31)(-3,27)(-3,28)(-3,29)(-3,30)3,26,CM1:24,0 ;3MIN 
231=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,C66337,0 ;BOOTSON 



PC-12 Panels 

 49

232=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(+3,29)(-3,31)3,30,CM1:21,0 ;LHHEAVY 
233=CP(+3,24)(+3,25)(-3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,CM1:20,0 ;LHON 
234=CP(+3,24)(-3,25)(-3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,CM1:18,0 ;FANS 
235=CP(-3,24)(-3,25)(-3,26)(-3,27)(-3,28)(+3,29)(+3,30)3,31,CM1:19,0 ;VENT 
236=CP(-3,24)(+3,25)(+3,26)(-3,27)(-3,31)(-3,29)(-3,30)3,28,C66484,0 ;INERTSEP 
237=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,31)(-3,29)(-3,30)3,28,C66338,0 ;PROP 
238=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,CM1:23,0 ;RHHEAVY 
239=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,CM1:22,0 ;RHON 
240=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,C66605,0 ;GPSOBS 
241=CP(-3,24)(-3,25)(-3,26)(-3,27)(+3,28)(+3,29)(-3,30)3,31,C66606,0 ;GPSMSG 
242=CP(+3,24)(-3,25)(+3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,C66609,0 ;GPSFPL 
243=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,31)(-3,29)(-3,30)3,28,C66611,0 ;GPSTERR 
244=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,C66612,0 ;GPSPROC 
245=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,29)(+3,30)3,31,C66624,0 ;GPSCRSR 
246=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(+3,29)(-3,30)3,31,C66616,0 ;GPSRNGUp 
247=CP(-3,24)(-3,25)(+3,26)(-3,27)(+3,28)(-3,29)(-3,31)3,30,C66615,0 ;GPSRNGDown 
248=CP(-3,24)(-3,25)(-3,26)(+3,27)(-3,28)(+3,29)(-3,31)3,30,C66617,0 ;GPSDIRECT 
249=CP(-3,24)(-3,25)(+3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66618,0 ;GPSMENU 
250=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(-3,29)(-3,30)3,31,C66619,0 ;GPSCLR 
251=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(+3,29)(-3,31)3,30,C66623,0 ;GPSENT 
253=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(+3,29)(-3,30)3,31,CM1:25,0 ;APDN 
254=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(-3,31)(-3,30)3,29,C65725,0 ;APHDG 
255=CP(-3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,29)(+3,30)3,31,C65729,0 ;APNAV 
256=CP(-3,24)(-3,25)(+3,26)(-3,27)(+3,28)(-3,31)(-3,30)3,29,C65724,0 ;APAPR 
257=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,29)(+3,30)3,31,C65728,0 ;APBC 
258=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,28)(-3,29)(-3,30)3,31,C65793,0 ;APYD 
259=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,31)3,30,C65580,0 ;APAP 
260=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,28)(-3,29)(-3,31)3,30,CM1:26,0 ;APUP 
261=CP(-3,24)(+3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,30)3,31,C65799,0 ;APALT 
262=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,28)(-3,31)(-3,30)3,29,C65859,0 ;APIAS 
263=CP(-3,24)(+3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66288,0 ;APFD 
264=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,31)(-3,29)(-3,30)3,28,CM1:27,0 ;APSOFT 
265=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(-3,29)(+3,30)3,31,CM1:28,0 ;APHALF 
266=CP(-3,24)(+3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,31)3,30,CM1:29,0 ;APTST 
267=CP(+3,24)(-3,25)(-3,26)(-3,27)(-3,28)(+3,29)(-3,30)3,31,CM1:30,0 ;ENG 
268=CP(-3,24)(+3,25)(-3,26)(-3,27)(+3,28)(-3,31)(-3,30)3,29,CM1:31,0 ;ARM 
269=CP(+3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,CM1:32,0 ;SETSW 
271=CP(-3,24)(+3,25)(-3,26)(+3,27)(-3,28)(-3,29)(-3,30)3,31,C65911,0 ;AV 
272=CP(+3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,C65908,0 ;GPS 
273=CP(-3,24)(+3,25)(-3,26)(+3,27)(-3,28)(-3,29)(-3,31)3,30,C66286,0 ;DME 
274=CP(+3,24)(-3,25)(+3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,C66375,0 ;NAV/GPS 
275=CP(-3,24)(+3,25)(-3,26)(+3,27)(-3,28)(-3,31)(-3,30)3,29,C65724,0 ;APR 
276=CP(-3,24)(+3,25)(-3,26)(+3,27)(+3,28)(-3,29)(-3,30)3,31,CM1:33,0 ;AHRS 
277=CP(-3,24)(+3,25)(-3,26)(+3,27)(+3,28)(-3,29)(-3,30)3,31,CM1:34,0 ;0 
278=CP(-3,24)(+3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,CM1:35,0 ;1 
279=CP(+3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,29)(-3,31)3,30,CM1:36,0 ;2 
280=CP(-3,24)(+3,25)(+3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,CM1:37,0 ;3 
281=CP(+3,24)(-3,25)(-3,26)(+3,27)(-3,28)(-3,31)(-3,30)3,29,CM1:38,0 ;4 
282=CP(-3,24)(+3,25)(+3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,CM1:39,0 ;5 
283=CP(+3,24)(-3,25)(-3,26)(+3,27)(-3,31)(-3,29)(-3,30)3,28,CM1:40,0 ;6 
284=CP(-3,24)(+3,25)(+3,26)(-3,31)(-3,28)(-3,29)(-3,30)3,27,CM1:41,0 ;7 
285=CP(F+15,10)(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,CM1:42,0 ;SWAPADF 
286=CP(F+15,11)(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66372,0 ;SWAPCOM1 
287=CP(F+15,12)(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66444,0 ;SWAPCOM2 
288=CP(F+15,13)(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66448,0 ;SWAPNAV1 
289=CP(F+15,14)(+3,24)(-3,25)(-3,26)(-3,27)(+3,28)(-3,29)(-3,30)3,31,C66452,0 ;SWAPNAV2 
293=CP(-3,24)(-3,25)(+3,26)(+3,27)(+3,28)(-3,29)(-3,30)3,31,C65842,0 ;NAV1IDEN 
295=CP(-3,24)(-3,25)(+3,26)(+3,27)(-3,28)(+3,29)(-3,30)3,31,C65843,0 ;NAV2IDEN 
298=CP(+3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,30)3,31,CM1:43,0 ;HSI 
299=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(+3,29)(-3,31)3,30,CM1:44,0 ;ARC 
300=CP(+3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,29)(-3,31)3,30,C66375,0 ;NAV 
301=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(+3,29)(-3,30)3,31,CM1:45,0 ;-> 
302=CP(+3,24)(+3,25)(-3,26)(-3,27)(-3,28)(-3,31)(-3,30)3,29,CM1:46,0 ;=> 



PC-12 Panels 

 50

303=CP(-3,24)(-3,25)(-3,26)(+3,27)(+3,28)(-3,29)(+3,30)3,31,CM1:47,0 ;1-2 
 
[MacroFiles] 
1=PC12 



PC-12 Panels 

 51

Appendix  D:  FSUIPC Macro File 
 
In order to get some of the functions to work I used FSUIPC’s macro function.  FSUIPC allows you to 
record mouse clicks that otherwise wouldn’t have a Flight Simulator command.  I was able to get most 
of the functions to work using these macros.  The ones I couldn’t access were: 
 

• Starter Interrupter 
• Deicing probes 
• GPS power on 
• GPWS (no longer used so I didn’t wire the switch) 
• WAAS (no longer used so I didn’t wire the switch) 

 
So literally I have five unused switches on my panels which I could relabel and use for something else. 
 
[Macros] 
Module="F1PC12.GAU" 
1=GEN2=RXd190*X8bcc 
2=Ext=RXd360*X8bcc 
3=Inv=RXd120*X8bcc 
4=Ess=RXd030*X8bcc 
5=Stby=RXd240*X8bcc 
6=FuelPump_LH=RXd4e0*X83cc 
7=FuelPump_RH=RXd670*X8bcc 
8=Strt=RXc680*X83cc 
9=Ignit=RXddc0*Xa100 
10=Lamp_Test=RXdea0*X8bcc 
11=Pusher=RXce60*X8bcc 
12=Fire=RXcd90*X8bcc 
13=Seat_Belts=RXccf0*X68cc 
14=NoSmkg=RXcc70*X68cc 
15=CabinHeat=RXcf70*X8bcc 
16=SYS=RXdb80*X8bcc 
17=RECIRC=RXdd50*X8bcc 
18=FANS=RXdca0*X8bcc 
19=VENT=RXdf80*X8bcc 
20=LH_ON=RXdaf0*X8bcc 
21=LH_Heavy=RXd9d0*X8bcc 
22=RH_ON=RXda60*X8bcc 
23=RH_Heavy=RXd920*X8bcc 
24=3min=RXd870*X8b00 
25=AP DN=RX9370*X55cc 
26=AP UP=RX96a0*X55cc 
27=AP Soft=RX9350*X8bcc 
28=AP Half=RX9330*X8bcc 
29=AP Test=RX9310*X8bcc 
30=Eng=RX8700*X83cc 
31=Arm=RX8890*X8bcc 
32=Set=RX88b0*X8bcc 
33=AHRS=RX10070*X8bcc 
34=0=RX4b90*Xa1cc 
35=1=RX4bc0*Xa1cc 
36=2=RX4bf0*Xa1cc 
37=3=RX4c20*Xa1cc 



PC-12 Panels 

 52

38=4=RX4c50*Xa1cc 
39=5=RX4c80*Xa1cc 
40=6=RX4cb0*Xa1cc 
41=7=RX4ce0*Xa1cc 
42=ADF Swap=RX5af0*X83cc 
43=HSI=RXa0a0*Xc7cc 
44=ARC=RXa0b0*Xc7cc 
45=->=RXa0c0*Xa1cc 
46=>>=RXa0e0*Xa1cc 
47=1-2=RXa120*X33cc 
48=ADF frac inc car=RX5a90*Xa1cc 
49=ADF frac dec car=RX5a70*Xa1cc 
50=ADF 1 inc=RX5ab0*Xa1cc 
51=ADF 1 Dec=RX5a50*Xa1cc 
52=ADF 10 Inc=RX5ad0*Xa1cc 
53=ADF 10 Dec=RX5a30*Xa1cc 
54=DH Up=RXa130*X83cc 
55=DH Down=RXa220*X8300 
56=DH Visible=RXa4d0*X8bcc 
57=Alt Up=RX8630*Xa1cc 
58=Alt Dn=RX8560*Xa1cc 
 
 


	Introduction
	PC-12 Panels
	Parts Sources
	PIC Microcontroller Programming
	Compiler
	Microcontroller
	Switch Matrix
	Diode Matrix
	Hardware
	Panel Design
	Building the Boxes
	Wiring to the Matrix
	Toggle Switches
	Rotary Encoder Switch
	Printed Circuit Board Design and Fabrication
	Programming
	USB Descriptor

	Appendix A: Wiring Table
	Appendix B: Program Code
	Descriptor File
	Program File

	Appendix C: FSUIPC Button Programming
	Appendix D: FSUIPC Macro File



